Skip to main content

Retrospective case-series of Paecilomyces lilacinus ocular mycoses in Queensland, Australia



The purpose of this study was to report: (1) the varying presentation of Paecilomyces ocular infections arising in Queensland; (2) the significance of immunosuppression as a primary determinant of disease; (3) the outcomes of voriconazole use; and (4) the ongoing need for both surgical and medical management of this devastating fungal infection.


A retrospective case series of 21 culture proven individuals participated in this series and were identified via a review of the pathology reporting system utilized in the Queensland public health system. All culture proven individuals were subjected to a systematic chart review.


The primary risk factor for Paecilomyces lilacinus infection is immunosuppression with 81.25 % of individuals being on some form of immunosuppression (i.e. systemic or topical). Of the cases 71.43 % had an intact epithelial surface at the time of diagnosis, and 76 % had no previous ocular history. The final visual outcomes were nine cases with HM vision or worse, three cases with 6/48–6/60 vision, three cases 6/12–6/24, and six cases with 6/12 vision or better. Despite voriconazole use rates of greater than 80 %, protracted and poor treatment outcomes continue to be commonplace.


Paecilomyces lilacinus is a filamentous fungus that has a predilection for immunosuppressed individuals. Despite in vitro and case reports demonstrating the effectiveness of voriconazole poor outcomes continue to be seen.


Paecilomyces is a filamentous saprophytic fungus that is found worldwide in soil, and as a contaminant in air and water. The fungus is typically resistant to multiple fungicidal agents, and was once considered primarily as a contaminate in culture due to its inherent resistance to available commercial sterile techniques [1, 2]. It is also found in fertilizers due to its bionematicidal effectiveness against nematodes, which threaten commercial vegetation [3]. The species include: Paecilomyces lilacinus, Paecilomyces variotti, Paecilomyces marquadnii and Paecilomyces javanicus, the former two being the most common cause of disease in humans [47]. Infection with Paecilomyces species is most common in the setting of immunosuppression [811], both topical and systemic, with rates of 76 % corticosteroid use in patients with ocular mycoses prior to diagnosis [12]. Cases of Paecilomyces infection predominantly include ocular mycoses and mycoses of cutaneous or subcutaneous tissues [7]. Paecilomyces has been shown to cause disease elsewhere in the body, but its predilection for the ocular surface and skin is thought to be due to a thermal intolerance of the fungus, with the optimum temperature for growth and sporulation, somewhere in the vicinity of 20–25 °C [13].

Ocular infection with Paecilomyces lilacinus has previously been reported to occur in the setting of chronic keratopathy, after previous ocular surgery, following corneal trauma, or with the use of soft contact lenses [12, 14]. The literature with respect to previous ocular surgery is somewhat skewed, with a large number of cases being reported in the early 1980s, occurring in the presence of contaminated intraocular lens implantation [15, 16]. A few cases exist within the literature, demonstrating the occurrence of Paecilomyces lilacinus infection in the setting of an intact epithelial surface [1722]. These cases initially presented with presumed immune-mediated scleritis [21], nodular episcleritis [18], acute anterior uveitis [19, 20], endophthalmitis [20], and corneal stromal or endothelial inflammation [17]. It has been postulated that an endogenous spread of the organism may be the underlying source of infection in these cases with an intact epithelium [17, 20, 22, 23]. However, few reports exist that identify Paecilomyces lilacinus within the systemic vasculature. Paecilomyces lilacinus has been identified in blood cultures, primarily in the presence of indwelling venous catheters, which subsequently became sterile after removal of the device [8, 24.]

A review of previous cases identified within Queensland, Australia was conducted to demonstrate: [1] the varying presentation of Paecilomyces ocular infections arising in Queensland; [2] the significance of immunosuppression as a primary determinant of disease; [3] the outcomes of voriconazole use; [4] the ongoing need for both surgical and medical management of this devastating fungal infection; and [5] the need for protracted treatment.


A retrospective multi-centre case series was conducted of all culture proven cases of ocular Paecilomyces lilacinus occurring within Queensland Health between 2000 and 2012. Ethics approval was gained from the Queensland Health Central Health and Medical Research Human Ethics Committee. Research adhered to the tenets of the Declaration of Helsinki. A search was undertaken of the electronic pathology system utilized by Queensland Health, namely Auslab and Auscare. A multi-centre study was conducted with cases coming from the two major referral centers within Queensland, The Princess Alexandra Hospital and The Royal Brisbane and Women’s Hospital. Search terms were Paecilomyces lilacinus and Paecilomyces species. Consent was obtained from participants for treatment undertaken.

Within the database a total of 135 cases of Paecilomyces lilacinus infection were identified. All non-ocular Paecilomyces infections were excluded from this study, providing a total of 21 cases of ocular Paecilomyces lilacinus infection with samples coming from corneal tissue, corneal scrapes, aqueous and vitreous biopsy. Specimens were transported in sterile containers or in syringes in the case of fluid specimens. Specimens were inoculated on Sabouraud’s agar at 25 °C for up to 1 month. Identification was performed via phenotypic methods at local facilities. Some of these cases have been previously documented within the literature [18, 22]. Identified cases, were subjected to a systematic chart review. Information obtained during the review, included: name, record unit number, age, gender, resident location, specimen type, date of collection, date of presentation, initial diagnosis, actual diagnosis, risk factors, initial treatment and management prior to recognition of fungal infection, elapsed time before positive diagnosis, continued treatment both medical and surgical, outcome of management (i.e. resolution of infection, enucleation, phthisical eye), final visual acuity, duration of follow-up and previous ocular history.

Data obtained from the chart review were analysed, formulating simple descriptive statistics, utilising RCommander Version 2.15.2 GUI 1.53.


The case series consisted of 6 females and 15 males with a mean age of 52.48 years (SD = 17.51; range = 19.0–76.0) (Refer to Table 1—cases). The average distance from Brisbane Central Business District (CBD) was 340 km (SD = 578.94, range = 12.6–1755.0). The average duration of follow-up from the time of initial diagnosis to last review was 28.19 months (SD = 38.52; range = 1.0–144; median = 7 months). Sixteen (76 %) of the patients had no previous history of ocular disease or surgery, with Paecilomyces lilacinus infection being the initial presenting problem for all these cases. Of the remaining five cases, two had a history of myopia and soft contact lens wear, two were bilateral pseudophakic, with one also having had a previous retinal detachment managed with scleral buckle, and one had a previous history of scleritis.

Table 1 Cases

The primary risk factor for Paecilomyces infection was immunosuppression, with 50 % of patients being on systemic immunosuppression (i.e. corticosteroids, cyclophosamide, azathioprine, sulfasalazine and methotrexate), 31.25 % on topical immunosuppression (i.e. dexamethasone, prednisolone, fluoromethalone), 12.5 % having exposure to organic material and 12.5 % wearing soft contact lenses (one of the patients who wore soft contacts was also treated with topical steroids). Initial presenting diagnoses for patients included: 6 with scleritis/episcleritis, 1 acute anterior uveitis, 2 with presumed toxoplasmosis, 3 with foreign body induced keratitis, 2 with contact lens associated keratitis, 1 with herpetic interstitial keratitis, 1 with endogenous endophthalmitis, and 1 with an endothelial plaque with an uncertain diagnosis, and 3 patients had no clear diagnosis at presentation.

The time to positive diagnosis of Paecilomyces lilacinus infection was on average 12.75 days (SD = 9.51; range = 2–40). With final diagnoses for patients including: 6 fungal endophthalmitis (28.57 %), 9 fungal keratitis (42.86 %), 4 fungal keratoscleritis (19.05 %), 1 fungal keratitis leading to endophthalmitis (4.76 %), and 1 fungal keratoscleritis leading to endophthalmitis (4.76 %). Of these cases, 15 had an intact epithelial surface (71.43 %) and 5 had a compromised epithelium (23.81 %). Medical management consisted of voriconazole, which was prescribed orally in 17 cases, followed by amphotericin, which was given intravenously in 7 cases (Refer to Table 2—antifungal agent use). Some individuals required greater than 15 intravitreal injections of voriconazole in order to assist in resolution of the infection. One case of fungal keratitis, secondary to a foreign body, resolved without antifungal agents, solely with the use of ceftazidime and gentamicin. Of the 21 cases, 18 cases (85.7 %) required surgical intervention in order to help resolve the infection. Surgical intervention included, 8 cases, which underwent penetrating keratoplasty and 9 cases, which received a pars plana vitrectomy (PPV). Of those receiving a penetrating keratoplasty, 5 required at least a second penetrating keratoplasty, with one individual having a total of 4 grafts. Of the cases receiving PPV, 4 cases of the group went onto have a second PPV (Refer to Table 3—surgical intervention). The final outcome for treatment, included 14 cases with resolution of infection (66.67 %), 4 cases with enucleation (19.05 %) and 3 cases with phthisis (14.29 %). The final visual outcomes were 9 cases with HM vision or worse, 3 cases with 6/48–6/60 vision, 3 cases 6/12–6/24, and 6 cases with 6/12 vision or better (Refer to Table 4—visual outcomes).

Table 2 Antifungal agent use
Table 3 Surgical intervention
Table 4 Visual outcomes


Australia appears to have a high number of Paecilomyces lilacinus ocular infections in comparison to other parts of the world [7, 22]. Infection has typically been reported to arise in individuals with chronic ocular disease, contact lens use or where the integrity of the eye has been disturbed (i.e. trauma, surgery) [12, 14]. In our study, we found that the majority of cases of infection arose in patients who had an intact epithelial surface and no previous ocular history, with 76 and 71.43 %, respectively. This is markedly different from one of the largest case series currently within the literature, which showed that only 5 of 17 individuals (29.4 %) had no apparent precipitating factor [12], but in line with a recent published case series from Queensland, Australia which also showed the majority of patients also had no specific inciting cause [16, 22].

Previous case reports do exist in the literature highlighting the absence of epithelial breakdown and subsequent Paecilomyces lilacinus infection [1723, 25], including a case of a suspected immune-mediated scleritis and another of acute anterior uveitis [19, 21]. Other cases have also been reported, with a number included in this current review [18, 22]. The authors do not postulate as to the apparent mechanism of the infection, other than to state that it is most likely associated with systemic immunosuppression, previous history of scleritis, diabetes or a previous biopsy that may have contributed to the evolution of the disease [21]. It has been suggested that Paecilomyces may be able to penetrate through an undisturbed epithelial surface or through micro-defects not visible to the naked eye [25]. Some researchers have also suggested that it may spread endogenously, even though few blood culture positive cases have been reported previously [17, 23]. Blood culture positive Paecilomyces typically occurs in association with intravascular prostheses [8, 24]. Furthermore, studies demonstrating the ability of Paecilomyces to actively infect animal and human corneas have either involved inoculation directly into the stroma [26] or via scarification of the cornea [12]. We have been unable to identify a study that has attempted to demonstrate whether Paecilomyces can actively penetrate an intact epithelium.

Immunosuppression is a significant determinant in the pathogenesis of paecilomyces infections. Previous reports highlighted the presence of immunosuppression in 76 % of cases of paecilomyces keratitis prior to diagnosis [12]. Murine models, with immunosuppressed mice (i.e. where their drinking water contained dexamethasone [10] or intraperitoneal cyclophosamide [27]), versus immunocompetent mice, show an inability of paecilomyces to cause disease in the absence of immunosuppression. The mortality in immunosuppressed murine models is incredibly high with one hundred percent of mice succumbing to fungaemia 35–45 days post inoculation [10]. These laboratory models demonstrate the importance of immunosuppression as an important factor in the causal pathway of disease. In our study we found that 81.25 % of individuals were on some form of immunosuppression prior to diagnosis, either in the form of systemic or topical immunosuppression, further providing weight to the importance of immunosuppression as a risk factor.

Infection with Paecilomyces lilacinus, is notoriously resistant to available antifungal preparations. Clinical efficacy has been demonstrated for the use of voriconazole monotherapy [18, 26] and in combination with terbinafine [1, 5, 7, 28, 29]. In vitro evidence also exists for the efficacy for posaconazole and ravuconazole [7], and one of the patients in the series did receive oral posaconazole, due to deranged liver functions as a result of oral voriconazole therapy. A recent case report also highlights the clinical efficacy of posaconazole in paecilomyces infection [30]. Voriconazole, a triazole antifungal, which inhibits fungal cytochrome P-450 mediated 14 α-lanosterol demethylation, a necessary step in ergosterol synthesis. This leads to a loss of ergosterol, which is an essential component of the fungal cell wall. In-vitro minimum inhibitory concentrations (MICs) for voriconazole range from 0.12 to 4.0 mg/L [7]. Numerous cases, within the literature have demonstrated the effective use of oral, topical, intravitreal and intracameral use of voriconazole for ocular Paecilomyces infection [5, 7, 12, 18, 29, 3135]. Eighty percent of cases within our study were treated with voriconazole, at least with an oral preparation. Despite, the higher rate of voriconazole use within the study, 19 % of patients still went onto have an enucleation, which was higher than that previously reported, predominantly in the absence of voriconazole use (5 %) [12]. Furthermore, a significant number of patients in our series required combined surgical intervention in order to assist in resolution of the infection, with 85 % requiring either a penetrating keratoplasty, pars plana vitrectomy or enucleation. This is also greater than that previously demonstrated by Yuan and colleagues, but equivalent to their literature review of current cases in their article [12]. It is therefore suspected that even with the increased susceptibility of Paecilomyces lilacinus to voriconazole treatment that combined surgical and medical management will remain the norm [22]. In addition, of the patient’s undergoing surgical intervention, 66 % required repeated surgical intervention, in combination with protracted medical management with voriconazole. Individuals received a minimum of 3 months oral voriconazole, with topical, intracameral or intravitreal voriconazole use dictated on a case-by-case basis.


We believe that Paecilomyces lilacinus ocular infections require persistent and aggressive treatment, with combined surgical and medical management, which patients may not be willing to undertake. Outcomes of Paecilomyces ocular infection should be clearly discussed with patients inflicted with this devastating organism.


  1. 1.

    Chang B, Sun PL, Huang FY, Tsai TC, Lin CC, Lee MD, Chen YC, Sheu JC, Tsai JD. Paecilomyces lilacinus perotinitis complicating peritoneal dialysis cured by oral voriconazole and terbinafine combination therapy. J Med Microbiol. 2008;57:1581–4.

    Article  PubMed  Google Scholar 

  2. 2.

    Ezzedine K, Belin E, Guillet S, Almeida MD, Droitcourt C, Accocebery I, Milpied B, Jouary T, Malvy D, Taieb A. Cutaneous hyphomycosis due to Paecilomyces lilacinus. Acta Dermato-Venereol. 2012;92:156–92.

    Article  Google Scholar 

  3. 3.

    Jacobs H, Gray SN, Crump DH. Interactions between nematogenous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res. 2003;107:47–56.

    Article  PubMed  Google Scholar 

  4. 4.

    Keshtkar-Jahromi M, McTighe AH, Segalman KA, Fothergill AW, Campbell WN. Unusual case of cutaneous and synovial Paecilomyces lilacinus infection of hand successfully treated with voricobazole and review of published literature. Myopathologia. 2012;174:255–8.

    Article  Google Scholar 

  5. 5.

    Anderson K, Mitra S, Salouti R, Pham TA, Taylor HR. Fungal keratitis caused by Paecilomyces lilacinus associated with a retained intracorneal hair. Cornea. 2004;23(5):516–21.

    Article  PubMed  Google Scholar 

  6. 6.

    Castelli M, Alastruey-Izquierdo A, Cuesta I, Monzon A, Mellado E, Rodrigues-Tudela JL, Cuenca-Estrella M. Susceptibility testing and molecular classification of Paecilomyces spp. Antimicrob Agents Chemother. 2008;52(8):2926–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. 7.

    Pastor F, Guarro J. Clinical manifestations, treatment and outcome of Paecilomyces lilacinus infections. Clin Microbiol Infect. 2006;12:948–60.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Chan-Tack K, Thio CL, Miller NS, Karp CL, Ho C, Merz WG. Paecilomyces lilacinus fungaemia in an adult bone marrow transplant recipient. Med Mycol. 1999;37:57–60.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ciecko SC, Scher R. Invasive fungal rhinitis caused by Paecilomyces lilacnus infection: report of a case and a novel treatment. ENT J. 2010;89(12):594–5.

    Google Scholar 

  10. 10.

    dos Santos Brito M, da Silva Lima M, Morgado FN, Raibolt P, Menezes R, Conceicao-Silva F, de Moraes Borba C. Characteristics of Paecilomyces lilacinus infection comparing immunocompetent with immunosuppressed murine model. Mycoses. 2011;54:513–21.

    Article  Google Scholar 

  11. 11.

    Schooneveld T, Freifeld A, Lesiak B, Kalil A, Sutton DA, Iwen PC. Paecilomyces lilacinus infection in a liver transplant patient: a case report and review of the literature. Transpl Infect Dis. 2008;10:117–22.

    Article  PubMed  Google Scholar 

  12. 12.

    Yuan X, Wilhelmus KR, Matoba AY, Alexandrakis G, Miller D, Huang AJW. Pathogenesis and outcome of paecilomyces keratitis. Am J Ophthalmol. 2009;147(4):691–6.

    Article  PubMed  Google Scholar 

  13. 13.

    Stephan Z, Al-Din SS. Influence of temperature and culture media on the growth of fungus Paecilomyces lilacinus. Revue de Nematol. 1987;10:494.

    Google Scholar 

  14. 14.

    Ali T, Amescua G, Miller D, Suh LH, Delmonte DW, Gibbons A, Alfonso EC, Forster RK. Contact-lens-associated Purpureocillium keratitis: risk factors, microbiologic characteristics, clinical course, and outcomes. Semin Ophthalmol. 2015:1–6.

  15. 15.

    Pettit T, Olson RJ, Foos RY, Martin WJ. Fungal endophthalmitis following intraocular lens implantation: a surgical epidemic. Arch Ophthalmol. 1980;98:1025–39.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    O’Day D. Fungal endophthalmitis caused by Paecilomyces lilacinus after intraocular lens implantation. Am J Ophthalmol. 1977;83:130–1.

    Article  PubMed  Google Scholar 

  17. 17.

    Hirst L, Sebban A, Whitby RM, Nimmo GR, Stallard K. Non-traumatic mycotic keratitis. Eye. 1992;6:391–5.

    Article  PubMed  Google Scholar 

  18. 18.

    McLintock C, Lee GA, Atkinson G. Management of recurrent Paecilomyces lilacinus keratitis. Clin Exp Optom. 2012;96:343–5.

    Article  PubMed  Google Scholar 

  19. 19.

    Mizunoya S, Watanabe Y. Paecilomyes keratitis with corneal perforation salvaged by a conjunctival flap and delayed keratoplasty. Br J Ophthalmol. 1994;78:157–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Okhravi N, Dart JK, Towler HM, Lightman S. Paecilomyces lilacinus endophthalmitis with secondary keratitis. Arch Ophthalmol. 1997;115:1320–4.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Chung P, Lin HC, Hwang YS, Tsai YJ, Ngan KW, Huang SCM, Hsiao CH. Paecilomyces lilacinus scleritis with secondary keratitis. Cornea. 2007;26:232–4.

    Article  PubMed  Google Scholar 

  22. 22.

    Hirst L, Choong K, Playford EG. Nontraumatic paecilomyces anterior segment infection: a pathognomonic clinical appearance. Cornea. 2014;33(10):1031–7.

    Article  PubMed  Google Scholar 

  23. 23.

    Okhravi N, Lightman S. Clinicial manifestations, treatment and outcome of Paecilomyces lilacinus infections. Clin Microbiol Infect. 2007;13(5):554.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shing M, Ip M, Li CK, Chik KW, Yuen PM. Paecilomyces variotii fungemia in an adult bone marrow transplant recipient. Bone Marrow Transpl. 1996;17:281–3.

    CAS  Google Scholar 

  25. 25.

    Lee G, Whitehead K, McDougall R. Management of Paecilomyces keratitis. Eye. 2007;21:262–4.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Sponsel W, Chen N, Dang D, Paris G, Graybill J, Najvar LK, Zhou L, Lam KW, Glickman R, Scribbick F. Topical voriconazole as a novel treatment for fungal keratitis. Antimicrob Agents Chemother. 2006;50:262–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. 27.

    Pujol I, Aguilar C, Ortoneda M, et al. Experimental pathogenesis of three opportunistic Paecilomyces species in a murine model. J Med Mycol. 2002;12:86–9.

    Google Scholar 

  28. 28.

    Ortoneda M, Capilla J, Pastor FJ, Pujol I, Yustes C, Serena C, Guarro J. In vitro interactions of approved and novel drugs against Paecilomyces spp. Antimicrob Agents Chemother. 2004;48:2727–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ford J, Agee S, Greenshaw ST. Successful medical treatment of a case of Paecilomyces lilacinus keratitis. Cornea. 2008;27:1077–9.

    Article  PubMed  Google Scholar 

  30. 30.

    Arnoldner M, Kheirkhan A, Jakobiec FA, Durand ML, Hamrah P. Successful treatment of Paecilomyes lilacinus keratitis with oral posaconazole. Cornea. 2014;33(7):747–9.

    PubMed Central  Article  PubMed  Google Scholar 

  31. 31.

    Monden Y, Sugita M, Yamakawa R, Nishimura K. Clinical experience treating Paecilomyces lilacinus keratitis in four patients. Clin Ophthalmol. 2012;6:949–53.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Deng S, Kamal KM, Hollander DA. The use of voriconazole in the management of post-penetrating keratoplasty Paecilomyces keratitis. J Ocul Pharmacol Ther. 2009;25(2):175–7.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Garbino J, Ondrusova A, Baligvo E, Lew D, Bouchuiguir-Wafa K, Rohner P. Successful treatment of Paecilomyces lilacinus endophthalmitis with voriconazole. Scand J Infect Dis. 2002;34:701–3.

    Article  PubMed  Google Scholar 

  34. 34.

    Yildiz E, Ailani H, Hammersmith KM, Eagle RC, Rapuano CJ, Cohen EJ. Alternaria and paecilomyces keratitis associated with soft contact lens wear. Cornea. 2010;29:564–8.

    Article  PubMed  Google Scholar 

  35. 35.

    Wu P, Lai CH, Tan HY, Ma DHK, Hsiao CH. The successful medical treatment of a case of Paecilomyces lilacinus keratitis. Cornea. 2010;29:357–8.

    Article  PubMed  Google Scholar 

Download references

Authors’ contributions

LT and DC formulated the study design and ethics application. LT performed the literature review, data collection and write-up of the manuscript. DC performed corrections of the manuscript, along with LT. Both authors had equal contribution in the design, acquisition of data, analysis, drafting and revising of the document. Both authors read and approved the final manuscript.


We would like to acknowledge all those participants who participated in this study.

Competing interests

The authors declare that they have no competing interests.

Funding statement

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Liam Daniel Turner.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turner, L.D., Conrad, D. Retrospective case-series of Paecilomyces lilacinus ocular mycoses in Queensland, Australia. BMC Res Notes 8, 627 (2015).

Download citation


  • Fungal infection
  • Paecilomyces
  • Voriconazole