Skip to main content
Fig. 1 | BMC Research Notes

Fig. 1

From: An evaluation of the evolution of the gene structure of dystroglycan

Fig. 1

Architecture of dystroglycan genes from different metazoan phyla. a The typical organization of the DG gene that is found in most Chordata. This panel also represents the DG gene structure identified in a hemichordate species (S. kowalevskii), the echinoderm S. purpuratus and the cephalopod mollusc O. bimaculoides. b Some species of Teleostei and Cyclostomata (Table 2) also have a paralogous DAG1 gene (designated as DAG1a, [26]) with an additional short intron that interrupts the sequence encoding the S6 domain. c Ciona intestinalis (Urochordata); d Branchiostoma floridae (Cephalochordata). e Typical DG gene organisation of Mollusca (Bivalvia and Gasteropoda) and Annelida; f Drosophila melanogaster (Arthropoda). g Caenorhabditis elegans (Nematoda). h Hydra magnipapillata (Cnidaria). i Trichoplax adhaerens (Placozoa). j Amphimedon queenslandica (Porifera). In all diagrams, pre-coding exons are in grey and coding exons are in white or coloured to represent the encoded protein domains. IG domains of Ciona DG show a lower degree of homology. Alternatively spliced exons in Drosophila are boxed by dashed lines. Introns are indicated by black lines. Boundaries of the IG1-intron are indicated by two vertical dashed lines. Key: IG1 and IG2, immunoglobulin-like domains; S6, S6-like domain; MAT, C-terminal region of α-dystroglycan upstream of the Gly-Ser maturation site; a/b, α/β DG proteolysis site, NU, natively unfolded region that forms the N-terminal region of the ectodomain of β-dystroglycan; TM, transmembrane; Cyto, cytoplasmic domain; DBS, dystrophin-binding site. Not to scale. Underlying data and accession codes are given in Tables 1 and 2

Back to article page