Skip to content

Advertisement

Open Access

Spectrum and antibiogram of bacteria isolated from patients presenting with infected wounds in a Tertiary Hospital, northern Tanzania

  • Nancy A. Kassam1,
  • Damian J. Damian1, 2Email author,
  • Debora Kajeguka1,
  • Balthazar Nyombi1, 2 and
  • Gibson S. Kibiki2, 3
BMC Research Notes201710:757

https://doi.org/10.1186/s13104-017-3092-9

Received: 17 October 2017

Accepted: 13 December 2017

Published: 20 December 2017

Abstract

Objective

This study aimed to determine the spectrum and antibiogram of the isolated bacteria from patients presenting with infected wounds at Kilimanjaro Christian Medical Centre in northern Tanzania.

Results

Bacterial growth was observed in the vast majority of wound swabs (91.4%). Most of the bacteria isolated (62.3%) were Gram-negative rods. Staphylococcus aureus was the most common isolated organism (16%) followed by other Coliforms and Enterococcus spp. (12.5% each). Enterococcus spp. (36.4%) was the most common isolated bacteria in diabetic wounds whereas S. aureus was the most common isolated bacteria from the wounds caused by trauma (40.0%) and surgical site infection (20.6%). Resistance was high to most common antibiotics used in the hospital.

Keywords

Wound infectionDrug resistance patternESBLAntibiogramSurgical site infectionDiabetic woundsTrauma wounds

Introduction

Bacterial infections of wounds are among the leading causes of morbidity and mortality throughout the world and are regarded as one of the most common nosocomial infections. Wound infections have been reported to vary between 3 and 11% in developed countries and estimated to be as high as 40% in developing countries [13]. Wound infections increase with the degree of wound contamination, and it is estimated that 50% of wounds contaminated by bacteria become clinically infected [4].

Drug resistance impinges on the quality of patient care through its associated mortality, morbidity and significant economic consequences [5]. In hospital practice, 30–50% of antibiotics are prescribed for surgical prophylaxis and 30–90% of these prophylaxes are inappropriate [6]. Inappropriate use of antibiotics increases selection pressure favouring the emergence of pathogenic drug-resistant bacteria which makes the choice of empirical antimicrobial agents more complicated [7, 8].

Extended spectrum beta-lactamase (ESBL) producing organisms are another type of common bacteria resistant to antibiotics. ESBL producing Gram-negative rods (GNRs) have spread all over the world [8, 9]. The prevalence of ESBL producing GNR varies across the world from 50 to 80% [8, 10, 11]. About 33% of infections by ESBL producers are deadly. In Tanzania, the death rate due to ESBL producing GNR is as high as 13.9% [12].

Comparing to Gram-negative, Gram-positives bacteria have been reported to be less prevalent causing wound infections [8, 11, 1315]. Staphylococcus aureus (S. aureus) has been reported to be the most common isolated bacteria from different wound types. Pseudomonas aeruginosa are commonly isolated in infected wounds following surgeries and burns whereas Enterococcus species and Enterobacteriaceae are commonly isolated from wounds in immune-compromised patients and abdominal surgeries [4, 8, 1618].

The majority of the isolates from infected wounds are known to be resistant to ampicillin and amoxicillin. Large numbers of S. aureus are methicillin-resistant S. aureus (MRSA) and most bacteria isolated are sensitive to quinolones, aminoglycosides and monobactam [10, 11, 1921].

Infection in a wound delays healing, prolongs hospital stay, increases trauma, poses risk for disarticulation and amputation, increases need for medical care and increases treatment costs [22]. This makes infection of wounds a matter of concern and makes it necessary to study the causative agents of these infections and their antibiogram.

Main text

Characteristics of participants and enrolment procedures

Patients with Surgical Sites Infections (SSI), infected diabetic wounds, infected wounds due to trauma, and patients with other infected wounds admitted in surgical ward at Kilimanjaro Christian Medical Centre (KCMC) from July 2013 to June 2014 were included in this study. Prior to enrolment in the study, patients were examined by a physician for a suspected or actual wound sepsis using the following criteria; ‘cellulitis’, ‘maladour’, ‘pain’, ‘delayed healing’, ‘deterioration in the wound’ or ‘wound breakdown’ and ‘increase in exudate volume’. Patients presenting with at least three of these clinical signs were enrolled in the study. Chronic wound was differentiated from acute wound if it failed to heal within 4 weeks and showed no sign of improvement within 8 weeks.

Data collection

Pus swabs collection and culture

Wound swabs were collected from patients with infected diabetic wounds, surgical sites, trauma and other wounds by the research nurse. To avoid contaminating the swab with skin flora, pus or necrotic tissue, the wound was thoroughly cleansed with 60–120 mL sterile normal saline prior to taking the sample. Sterile gauze was used to remove excess saline from the wound surface and the pus swabs were collected using sterile swab by swabbing at the middle of the wound. When there were two or more wounds in the same location, separate swabs were used for each wound. A swab moistened with sterile normal saline was rolled deep in the wounds and inserted immediately into a tube containing Stuart’s transport media for preservation of microbes and then transported to the laboratory [8, 16]. Pus swabs were streaked on Blood Agar (BA) and MacConkey Agar (MCA) plates and incubated aerobically for 18–24 h at 37 °C. They were then observed for bacterial growth. Plates with no growth and with growth were re-incubated for another 18–48 h for isolation of bacteria that require extended incubation (slow growers) [8, 16, 17].

Identification of bacterial pathogens

Standard techniques were used for identification of pathogenic bacteria isolated in pure cultures. Characteristic morphological appearances of colonies on media, Gram stains and standard biochemical tests including catalase, coagulase, oxidase, Voges Proskauer, hydrogen sulphide production, urease, methyl red, indole, citrate, CAMP test and sugar utilisation were used to characterise bacteria and identify them [17].

Antibiotics susceptibility testing

Drug susceptibility tests were performed using the Kirby–Bauer disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines. A sterile swab was dipped into the suspension of the isolate in normal saline, squeezed free from excess fluid against the side of tube and spread over the Mueller–Hinton agar plate. The density of suspension to be inoculated was determined by comparison with the optical density of McFarland 0.5 Barium sulfate solution. Sensitivity discs of appropriate antibiotics were placed onto the media and incubated at 37 °C for 16–18 h except for coagulase-negative staphylococci which was incubated for 24 h and methicillin-resistant staphylococci at 35 °C [23]. Zones of inhibition were read and, incubation and resistance rates to respective antibiotics were determined.

ESBL production screening

ESBLs production was tested by the disc diffusion method on Mueller–Hinton Agar according to the CLSI guidelines and confirmed by the double disc approximation method [23].

Statistical analysis

Clinical, demographic and laboratory data were entered and linked for each patient using Statistical Package for Social Science software version 20 (IBM Corp, Chicago IL). Thereafter, data were cleaned and analysed using Stata software (Version 13, StataCorp, College Station, Texas). Numeric variables were summarised using measures of central tendency with their respective measures of dispersion while frequency and percentages were used to summarise categorical data.

Results

General characteristics of the study participants

In total, 93 patients diagnosed with infected wounds were enrolled in this study. Male patients numbered 63 (67.7%). The median (range) age at recruitment was 45 (1–80) years. Most of participants, i.e. 65 (71.4%) had acute wounds. The majority of patients, i.e. 82 (90.1%) indicated to have used antibiotics either as a prophylaxis or treatment previously. Additional file 1: Table S1 shows these results.

Bacteria isolated

A total of 93 wound swabs from 93 patients were cultured and 146 bacteria were isolated. Of them 91.4% had bacterial growth. Gram stains of pure cultures showed 91 (62.3%) of the isolates were gram-negative rods. A total of 144 pathogenic bacteria were isolated from 83 cultures. Staphylococcus aureus was the most common isolate (16.0%) followed by other Coliforms and Enterococcus spp. (12.5% each). Figure 1 shows these results.
Figure 1
Fig. 1

Species of bacteria isolated

More than one-third of the wound infections were caused by single isolate, i.e. 38 (44.7%). According to the type of wounds, Staphylococcus aureus was the most isolated bacteria in acute wounds (29.1%) followed by Pseudomonas aeruginosa (18.2%) and other Coliforms (23%). Whereas in chronic wounds, Proteus mirabilis (26.9%) followed by Enterococcus species and Escherichia coli (23.1%) were the most common isolated bacteria. Additional file 2: Table S2 and Additional file 3: Figure S1 depict these results.

Antibiogram of the isolated bacteria

Staphylococcus aureus showed high resistance to amoxicillin (61.9%). Most Gram-negative rods isolated were very resistant to amoxicillin–clavulanate and cotrimoxazole (66.7–100%) respectively. Tables 1 and 2 show these findings.
Table 1

Drug resistance patterns of Gram positive isolates

Antibiotics

Gram positive isolate (%)

S. aureus (n = 23)

CNS (n = 7)

Enterococcus spp. (n = 18)

Amoxicillin

61.9a

33.3a

35.7a

Amoxicillin–clavulanate

NT

57.1

47.1

Ceftriaxone

21.7

33.3a

NT

Ciprofloxacin

4.3

0.0a

31.3a

Gentamycin

17.4

0.0

NT

Clindamycin

14.3a

0.0

NT

Erythromycin

45.0a

42.9

42.9a

NT, not tested; CNS, Coagulase negative Staphylococcus

aNot all bacteria were tested against a particular drug

Table 2

Antibiotic resistance patterns for Gram negative rods isolated (n = 91)

Antibiotics

Gram negative rods isolated (%)

K. PN

K. OX

P. MR

P. SP

P. AE

E. CL

O. COL

Amikacin

0.00

0.00

0.00

0.00

0.00

0.00a

4.0

Amoxicillin–clavulanate

100.0

100.0

80.0

66.7a

100.0

92.9

96.6

Ceftazidime

70.0

20.0

12.5a

33.3a

25.0

18.2a

72.0

Ceftriaxone

70.0

20.0

37.5a

22.2

21.4

38.5a

64.0

Ciprofloxacin

30.0

20.0

0.00

0.00a

0.00

35.7

36.0

Cotrimoxazole

100.0

80.0

66.7a

77.8a

92.9

84.6a

84.0

Gentamycin

50.0

60.0

40.0

22.2

28.5

50.0

52.0

Cefotaxime

66.7a

0.00a

50.0a

55.5a

58.33

45.5a

70.8a

Gram-negative rods isolated: K. PN, Klebsiella pneumoniae; K. OX, Klebsiella oxytoca; P. MR, Proteus mirabilis; P. SP, Proteus species; P. AE, Pseudomonas aeruginosa; E. CL, Escherichia coli; O. COL, Other Coliforms; Acinetobacter spp.; Citrobacter spp.; Morganella spp.

aNot all bacteria were tested against a particular drug

ESBL producing Gram-negative rods

The 44 Gram-negative rods isolated, including Klebsiella pneumoniae, Escherichia coli and Proteus species, were phenotypically tested for ESBL production. Half (50%) of these isolates were ESBL producers. All ESBL-producing Gram-negative rods showed 100% resistance rates to ceftriaxone, cefotaxime and cotrimoxazole. These bacteria showed resistance rates of 60–100% to amoxClav, ceftazidime and gentamycin. All ESBL producing GNR showed no resistance to amikacin.

Discussion

In this study, Gram-negative rods were the predominant and leading cause of wound infections. These findings are in line with those of previous studies in Asia and other African settings [8, 11, 13, 14]. This might be due to high resistances to antibiotics showed by Gram-negative bacteria compared to Gram-positive isolates, and therefore their persistence in infected wounds. Furthermore, chronic wounds were infected by multiple Gram-negative rods. The multiple bacterial infections in this case might be due to impaired immune responses associated with diabetes. These results are in accord with recent studies in Tanzania where polymicrobial wound infections were reported to be common in diabetic wounds [8, 24].

In general, Staphylococcus aureus was the most common bacteria isolated in this study. This is a finding consistent with most studies done across the world [10, 17, 21]. S. aureus are normal flora of the skin and anterior nares, therefore they can easily contaminate wounds and cause infections. Moreover, S. aureus are known to have a vast number of virulence factors that increase their ability to cause infections when compared to other bacteria. Our findings are contrary to the study conducted in a similar setting where Pseudomonas aeruginosa was the common isolate in SSI. These variations could be attributed to several factors including the nature of the surgical site itself, the wound site, the type of prophylactic antibiotics used for infections prevention, the level of nursing care given and the measures taken to prevent nosocomial infections [8, 10].

Enterococcus was the most common bacteria isolated in diabetic wounds, perhaps due to their opportunistic pathogen behaviour since lowered immune responses are associated with diabetes. Other common isolates from IDFUs were Proteus and Klebsiella, which are known to be common isolates in chronic wounds. These bacteria had high rates of ESBL production and showed high multiple drug resistance (MDR) rates. Studies elsewhere have reported similar findings [1315, 20, 24].

In this study, high drug resistance was observed for amoxicillin–clavulanate and cotrimoxazole. These antibiotics are relatively cheap and readily available. These, together with policies that do not restrict antibiotics accessibility to patients, might have caused the irrational overuse of these drugs which might have led to bacterial resistance. Cephalosporins were ineffective against most Gram-negative rods. This might be due to mutational emergence and the spread of ESBL-producing Gram-negative rods and the extensive use of these antibiotics in both treatment and prophylaxis. In this setting, good responses were seen for ciprofloxacin and amikacin. In our setting, the use of these antibiotics is highly restricted due to their adverse side effects. Ciprofloxacin has been recommended only in certain bacterial infections. Furthermore, amikacin is very expensive in our community and the majority of patients could not afford to use it. The different levels of resistance to cefotaxime and ceftriaxone are surprising, although this may be influenced by the fact that not all isolates were tested against all antibiotics. Other studies showed findings in accordance with these [8, 10, 19].

Limitation

Despite being a commonly-used, non-invasive and cost-effective method, swabs might provide a poor specimen as compared to needle aspiration or tissue biopsy if not collected appropriately. Improper specimen collection affects the results obtained, often by reflecting normal skin flora and colonizing organisms, making it difficult to decide which organisms are the true pathogens. However, our results are not likely to be affected by this since the wound was cleansed thoroughly prior to swab collection. Moreover, the small sample size did not allow us to conduct advanced statistical analyses which could have potentially strengthened this study.

Abbreviations

BA: 

Blood Agar

CLSI: 

Clinical and Laboratory Standards Institute

ESBL: 

Extended spectrum beta-lactamase

GNRs: 

Gram-negative rods

IDFU: 

Infected Diabetic Foot Ulcer

KCMC: 

Kilimanjaro Christian Medical Centre

KCMUCo: 

Kilimanjaro Christian Medical University College

KCRI: 

Kilimanjaro Clinical Research Institute

MCA: 

MacConkey Agar

MDR: 

multiple drug resistance

MRSA: 

methicillin resistant Staphylococcus aureus

SSI: 

surgical site infection

Declarations

Authors’ contributions

NAK designed the study. NAK and DJD developed the data collection instruments. NAK, DJD, DK, BN, and GSK participated in data collection and were involved in producing the first draft of the manuscript. NAK and DJD analysed the data and interpreted the results. NAK, DJD, DK, BN, and GSK contributed to the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the management of KCMC hospital and heads of respective departments for permission and support to conduct the study. Furthermore, we are extending our gratitude to the study nurses and patients who agreed to participate in the study.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets analysed during the current study are not publicly available due to ongoing further analyses but are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Ethical approval to conduct this study was obtained from Kilimanjaro Christian Medical University College Ethical Committee—Institute Research Board. Permission to conduct this study was obtained from the executive director at KCMC, the head of clinical laboratory and respective clinical departments. Potential study participants provided written fully informed consent and assent for those below 18 years. In addition, written parental consent was obtained for the under age (< 18 years) study participants. Patients’ hospital identification numbers were used instead of names for confidentiality purposes. Laboratory results were communicated back to the physicians for patient management.

Funding

None.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
(2)
Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
(3)
Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania

References

  1. Mayon-White RT, Ducel G, Kereselidze T, Tikomirov E. An international survey of the prevalence of hospital-acquired infection. J Hosp Infect. 1988;11:43–8.View ArticlePubMedGoogle Scholar
  2. Tikhomirov E. WHO programme for the control of hospital infections. Chemioterapia. 1987;6:148–51.PubMedGoogle Scholar
  3. Ducel G, Fabry J, Nicolle L. Prevention of hospital-acquired infections. 2nd ed. Geneva: World Health Organization; 2002.Google Scholar
  4. Balows A, Truper H, Dvorkin M, Harder W, Schleifer K. The prokaryotes. A handbook on the biology of bacteria: proteobacteria: gamma subclass. 2nd ed. New York: Springer; 1991. https://doi.org/10.1007/0-387-30745-1.
  5. Kunin CM. Resistance to antimicrobial drugs—a worldwide calamity. Ann Intern Med. 1993;118:557–61.View ArticlePubMedGoogle Scholar
  6. Munckhof W. Antibiotics for surgical prophylaxis. Aust Prescr. 2005;28:38–40. https://doi.org/10.18773/austprescr.2005.030.View ArticleGoogle Scholar
  7. Al-Momany NH, Al-Bakri AG, Makahleh ZM, Wazaify MMB. Adherence to international antimicrobial prophylaxis guidelines in cardiac surgery: a Jordanian study demonstrates need for quality improvement. J Manag Care Pharm. 2009;15:262–71. https://doi.org/10.18553/jmcp.2009.15.3.262.PubMedGoogle Scholar
  8. Manyahi J. Bacteriological spectrum of post operative wound infections and their antibiogram in a Tertiary Hospital, Dar Es Salaam, Tanzania. Master thesis in Medicine (Microbiology and Immunology). Muhimbili University of Health and Allied Sciences; 2012.Google Scholar
  9. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet (London, England). 2006;368:874–85. https://doi.org/10.1016/s0140-6736(06)68853-3.View ArticleGoogle Scholar
  10. Shriyan A, Sheetal R, Nayak N. Arobic micro-organism in post-oprative wound infection and their antimicrobial susceptibility patterns. J Clin Diagn Res. 2010;3:2208–16.Google Scholar
  11. Etok CA, Edem EN, Ochang E. Aetiology and antimicrobial studies of surgical wound infections in University of Uyo Teaching Hospital (UUTH) Uyo, Akwa Ibom State, Nigeria. Niger Open Access Sci Rep. 2012;1:1–5. https://doi.org/10.4172/scientificreports.Google Scholar
  12. ReAct. A fact sheet from ReAct-action on antibiotic resistance. Uppsala; 2012.Google Scholar
  13. Osariemen IJ, Olowu SS, Adevbo E, Omon EE, Victoria O, Imuetinyan EJ, et al. Aerobic bacteria associated with diabetic wounds in patients attending clinic in a rural community in Nigeria. Glob Res J Microbiol. 2013;3:8–12.Google Scholar
  14. Banashankari GS, Rudresh HK, Harsha AH. Prevalence of Gram negative bacteria in diabetic foot—a clinico-microbiological study. Al Ameen J Med Sci. 2012;5:224–32.Google Scholar
  15. Raja NS. Microbiology of diabetic foot infections in a teaching hospital in Malaysia: a retrospective study of 194 cases. J Microbiol Immunol Infect. 2007;40:39–44.PubMedGoogle Scholar
  16. Mohammed A, Adeshina G, Ibrahim YK. Incidence and antibiotic susceptibility pattern of bacterial isolates from wound infections in a tertiary hospital in Nigeria. Trop J Pharm Res. 2013;12(4):617–21.Google Scholar
  17. Taiwo S, Okesina A, Onile B. In vitro antimicrobial susceptibility pattern of bacteria isolated from infected wounds at the University of Illorine teaching Hospital. Afr J Exp Exp Microbiol. 2002;3:13–6.Google Scholar
  18. National Nosocomial Infections Surveillance. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992–June 2001. Am J Infect Control. 2001;29:470–85. https://doi.org/10.1067/mic.2001.119952.Google Scholar
  19. Sule A, Thianni L, Sule-Odu O, Olusanya O. Bacterial pathogens associated with infected wounds in Ogun State University Teaching Hospital, Sagamu, Nigeria. Afr J Clin Exp Microbiol. 2002;3:13–6.Google Scholar
  20. Orji F, Nwachuku N, Udora E. Original article bacteriological evaluation of diabetic ulcers in Nigeria. Afr J Diabetes Med. 2009;19:19–21.Google Scholar
  21. Ahmed MI. Prevalence of nosocomial wound infection among postoperative patients and antibiotics patterns at teaching hospital in Sudan. N Am J Med Sci. 2012;4:29–34. https://doi.org/10.4103/1947-2714.92900.View ArticlePubMedPubMed CentralGoogle Scholar
  22. Emori TG, Gaynes RP. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 1993;6:428–42.View ArticlePubMedPubMed CentralGoogle Scholar
  23. CLSI. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. CLSI document M100-S25. 2015.Google Scholar
  24. Chalya PL, Mabula JB, Dass RM, Kabangila R, Jaka H, McHembe MD, et al. Surgical management of diabetic foot ulcers: a Tanzanian university teaching hospital experience. BMC Res Notes. 2011;4:365. https://doi.org/10.1186/1756-0500-4-365.View ArticlePubMedPubMed CentralGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement