Skip to main content
Fig. 1 | BMC Research Notes

Fig. 1

From: HIV-1 Tat alters neuronal intrinsic excitability

Fig. 1

Summary of baseline electrophysiological function behaviors that distinguish neuronal subsets in hippocampal primary cultures, and that were utilized to examine the effect of Tat exposure. The expected recording profiles distinguish pyramidal glutamatergic neurons (red lines) from GABAergic interneurons (blue lines), as seen in this representative electrophysiological characterization of hippocampal neurons in culture. a Whole cell patch-clamp recording from pyramidal neuron (upper red traces) and interneuron (lower blue traces). Voltage responses to hyperpolarizing and depolarizing current pulses differ in the 2 types of neurons. Pyramidal neurons show their characteristic voltage sag during hyperpolarizing pulse, and a strong adaptation. In contrast, interneurons fire at higher frequency without signs of adaptation. b Action potentials (AP) evoked by a short depolarizing current pulse. In the pyramidal neurons, AP shows a depolarizing potential during the repolarization phase (upper trace). In interneurons, the AP is followed by a fast hyperpolarization, referred to as fast after-hyperpolarization (fAHP) (lower trace), which is a characteristic oh hippocampal interneurons. c The action potential width is shorter in interneurons (blue lines) when compared to pyramidal neurons (res lines). We tested the hypothesis that HIV Tat has the ability to interact with neurons affecting their performance, which can be detectable by changes (increase or decrease) in the pulse current intensity that is necessary to elicit an AP

Back to article page