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Abstract

Background: Genetic association studies, especially genome-wide studies, make use of linkage disequilibrium(LD)
information between single nucleotide polymorphisms (SNPs). LD is also used for studying genome structure and
has been valuable for evolutionary studies. The strength of LD is commonly measured by r2, a statistic closely
related to the Pearson’s c2 statistic. However, the computation and testing of linkage disequilibrium using r2

requires known haplotype counts of the SNP pair, which can be a problem for most population-based studies
where the haplotype phase is unknown. Most statistical genetic packages use likelihood-based methods to infer
haplotypes. However, the variability of haplotype estimation needs to be accounted for in the test for linkage
disequilibrium.

Findings: We develop a Monte Carlo based test for LD based on the null distribution of the r2 statistic. Our test is
based on r2 and can be reported together with r2. Simulation studies show that it offers slightly better power than
existing methods.

Conclusions: Our approach provides an alternative test for LD and has been implemented as a R program for
ease of use. It also provides a general framework to account for other haplotype inference methods in LD testing.

Background
Genetic association studies, especially large-scale gen-
ome-wide association studies have become very popular
in recent years due to the rapid advancement of geno-
typing technologies and the completion of the Human
Genome Project [1,2]. More than 400 susceptibility
regions have been identified through genome-wide asso-
ciation approach. This approach relies on the linkage
disequilibrium information between genetic markers,
mostly single-nucleotide polymorphisms (SNPs), hence
been termed linkage disequilibrium mapping. Linkage
disequilibrium (LD) refers to the nonrandom association
of alleles at different loci on the same haplotype. The
underlying assumption of genetic association studies is
that there are some disease causing loci in the genome,
and if the SNPs under investigation (i.e. markers) and
the disease-causing loci are in close proximity, the mar-
ker alleles will be associated with the alleles at the dis-
ease-causing loci. In other words, those markers are in
LD with the disease causing loci if they are in close

proximity. Since markers in high LD are highly corre-
lated, testing the significance of LD between alleles of
markers is also useful in finding LD blocks and tag-
SNPs. This could reduce the number of markers
required in genome-wide studies. In addition to gene
mapping, LD information also proves to be useful in
evolutionary studies of gene dynamics, tracing human
origin and history, and studies of genome structure and
forensic science.
Consider two bi-allelic SNPs, marker A and marker B.

The two alleles at marker A are denoted as A1 and A2

with frequencies p1 and p2, respectively, and the two alleles
at marker B are denoted as B1 and B2 with frequencies q1
and q2 respectively. The non-random association of the
alleles at the two loci can be measured as the difference
between the haplotype frequency of A1B1 in the popula-
tion and the expected frequency under the null hypothesis
of independence i.e., δ = pA1B1 − p1q1, where pA1B1 is the
frequency of haplotype A1B1. If we replace the population
haplotype frequency of A1B1, pA1B1, by the observed fre-
quency, fA1B1 in the sample, we get an estimator of δ, given
by D = fA1B1 − p1q1. The statistic D depends on marker
allele frequency, which makes it harder to compare across
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different markers and populations. As a result, many mea-
sures have been proposed to standardize D. Two such
common measures of LD are D’ [3] and r2 [4]. D’ is
bounded between 0 and 1. The bound of r2 depends on
allele frequency and is given in [4].
The first measure is D’ = D/Dmax, where Dmax is the

upper bound on D, given by,

Dmax =
{
min(p1q2, p2q1) D > 0
min(p1q1, p2q2) D < 0.

The other popular measure of LD, denoted r2, is the
correlation of alleles at the two bi-allelic loci, defined as,

r2 =
D2

p1p2q1q2
. (1)

In general, r2 is used to measure the statistical associa-
tion between marker pairs and is related to the power of
LD mapping. In a case-control study, if r2 is the level of
LD between a marker and a causative polymorphism
and the sample size required to detect the association of
the disease with the causative polymorphism is n, then
the sample size required to detect the association of the
disease with the marker at the same power level is
approximately equal to n/r2 [5-7]. Because of this conve-
nient relationship, r2 is used extensively in association
mapping as a measure of LD.
r2 is also closely related to the Pearson’s c2 statistic

for testing the association of alleles at two loci. For two
SNP markers A and B, each having 2 alleles, we can
construct a 2 × 2 contingency table containing the hap-
lotype counts. We could then compute the Person’s c2

statistic with 1 degree of freedom based on the contin-
gency table. The LD measure r2 can then be written as,

r2 = χ2
1 /N, (2)

where N is the number of chromosomes in the sam-
ple, or twice the number of individuals for humans. Nr2

is then compared to a χ2
1-distribution as a test of LD.

This works fine when the haplotypes can be directly
observed. However, problems arises when we use this
approach in the analysis of population-based data,
where haplotypes are usually not observed so the cell
counts of the contingency table are not known. As a
result, an estimation procedure, such as maximum-like-
lihood approach, has to be used to estimate the haplo-
type counts. This introduces additional variability and in
turn the test statistic Nr2 will not follow a χ2

1-distribu-
tion. For example, in the R package, “genetics“, the
estimated haplotype counts are used to compute Nr2,
which is then compared to a χ2

1-distribution as a test of
LD, although there is a warning in the documentation
noting that this may not be a valid test.

An approach that allows for unknown haplotypes in
testing LD has been proposed by Weir [8], based on a
composite LD measure. This approach has been
extended to markers with multiple alleles by Schaid [9]
and Zaykin et al. [10]. A test of LD based on the com-
mon measure r2 has been developed on the asymptotic
distribution derived from the δ-method [11]. In this
report, we first show that the additional variability from
haplotype estimation has to be accounted for in a test of
LD when haplotype frequencies are not available. We
then propose a test that accounts for this variability and
present its properties in terms of type I error rate and
power. Finally we compare the our test with that based
on the composite LD and the test based on the asymp-
totic distribution.

Methods
Effects of haplotype estimation
As mentioned above, in most population-based studies
where haplotypes are not directly observable, the haplo-
type counts have to be estimated. Most of the estima-
tion procedures are based on maximum-likelihood
approach as implemented in the R package “genet-
ics“, which is freely availably from the CRAN website
http://www.cran.org. This estimation procedure adds
additional variability which could make the distribution
of the test statistic Nr2 deviate from the χ2

1-distribution.
In order to study the effects of the additional variability
on the distribution of the test statistic, we perform
simulations under the null hypothesis of no LD. The
empirical distribution is then compared to the χ2

1-distri-
bution. Specifically, we consider 2 bi-allelic SNPs, A and
B. The alleles at marker A are denoted as A1 and A2

with frequencies p1 and p2 respectively and those at
marker B are B1 and B2 with respective frequencies q1
and q2. When an individual is heterozygous at both
markers, the underlying haplotypes cannot be identified
with certainty from the genotype. In the first set of
simulations, we assume the two markers are in Hardy-
Weinberg equilibrium (HWE). Under HWE, the geno-
type frequencies at SNP A are p21, 2p1p2, and p22 for
A1A1, A1A2 and A2A2, respectively. Similarly, we can
write the genotype frequencies at SNP B. Under the null
hypothesis of no LD, the joint distribution of the two-
locus genotype follows a multinomial distribution with
cell probabilities equal to the product of the correspond-
ing genotype frequencies at the two SNPs because geno-
types at the two SNPs are independent. For example,
the two-marker genotype frequency of A1A1B1B1 is p21q

2
1.

We simulate the genotypes at the two SNPs in 1000
individuals by sampling from this multinomial distribu-
tion. The haplotype counts are then estimated from the
simulated genotype data using the maximum-likelihood
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approach implemented in the R package “genetics“.
We then compute the test statistic Nr2 based on the
estimates of haplotype counts. We generate 10,000 repli-
cations for the simulation. The empirical distribution of
Nr2 from the 10,000 replicates is then compared with
the χ2

1-distribution. To examine the effect of ignoring
the variation in haplotype estimation, we use the upper
0.05 quartile from the χ2

1-distribution as cutoff and
compute the proportion of simulated replicates with the
test statistic exceeding the cutoff point. Similar analyses
are performed at 0.01 and 0.001 significance level.
In our second set of simulations, we do not assume

HWE. We denote the departure of genotype frequencies
from HWE proportions as Hardy-Weinberg disequili-
brium (HWD), which can bias estimates of haplotype
frequencies for most likelihood-based methods [12]. We
perform simulations under HWD to study its effect on
the distribution of the test statistic, Nr2. Under HWD,
the genotype frequencies at SNP A can be expressed in
terms of allele frequencies, p1, p2 and a coefficient of
HWD, DH ,

f (A1A1) = p21 +DH,

f (A1A2) = 2p1p2 − 2DH,

f (A2A2) = p22 +DH.

(3)

This represents a simple parameterization of genotype
frequencies similar to those in [8] and [9]. Under HWD,
there are less heterozygotes compared to the case under
HWE when DH < 0, and more heterozygotes when DH >
0. Similar expressions can be written for the genotype
frequencies at SNP B. Under the null hypothesis of no
LD, the joint distribution of the two-marker genotypes
is a multinomial distribution with each cell probability
equal to the product of the corresponding genotype fre-
quencies at the two SNPs. Two-marker genotypes for
1,000 individuals are simulated by sampling from this
multinomial distribution. Similar to the case under
HWE, haplotype counts are estimated using the maxi-
mum-likelihood approach implemented in the R pack-
age “genetics“ and the values of the proposed test
statistic Nr2 are computed and compared with the
χ2
1-distribution.

Our Approach
As shown in the results section, with unknown haplo-
types, the empirical distribution of the test statistic Nr2

deviates drastically from the χ2
1-distribution, and type I

error is greatly inflated. Therefore, we propose an
Monte-Carlo approach for LD testing based on the dis-
tribution of the test statistic Nr2 under the null hypoth-
esis of no LD. We use the quartiles from the empirical
distribution under the null hypothesis as the critical

values in order to give the correct type I error rate. The
distribution under null hypothesis is generated using a
bootstrap approach [13]. Specifically, under the null
hypothesis of no LD, the genotypes at the two SNPs are
independent. Therefore, given the observed genotypes
from a sample of N individuals, we first generate a boot-
strap sample of N individuals by sampling with replace-
ment from the genotypes at SNP A. This process is
repeated for SNP B. The bootstrapped genotypes from
SNP A are then randomly paired up with those from
SNP B to form two-locus genotypes for the N indivi-
duals. This constitutes one bootstrap sample. We then
apply the likelihood-based method in the R package
“genetics“ and calculate the test statistic for each
bootstrap sample. This is replicated 10,000 times to gen-
erate the distribution under the null hypothesis.

Power Analysis
We consider two simulation scenarios for the power
analysis, one assuming HWE and the other under
HWD, using the same simulation algorithm for both
scenarios. The simulations are performed in two steps.
First we simulate genotypes for 1,000 individuals at SNP
A with HWD coefficient DH by sampling from the mul-
tinomial distribution with cell probabilities given in
Equation (3). For the simulations under HWE, we set
DH = 0. In simulation step two, for each of the two
homologous chromosomes (one paternal and one mater-
nal) in an individual, the allele at SNP B on the same
chromosome is then sampled from a conditional distri-
bution determined by the LD between SNP A and SNP
B. From the definition of the statistic D, the haplotype
frequencies can be expressed as

p11 = f (A1B1) = p1q1 +D

p12 = f (A1B2) = p1q2 −D

p21 = f (A2B1) = p2q1 −D

p22 = f (A2B2) = p2q2 +D.

The conditional probability of the allele B1 at SNP B
given that SNP A has allele A1 on the same chromo-
some is given by,

P(B1|A1) = f (A1B1)/p1 = (p1q1 +D)/p1 = q1 +D/p1.

Similarly, we have P(B2|A1) = q2 - D/p1,P(B1|A2) = q1 -
D /p2, and P(B2|A2) = q2 + D/p2. With the simulated
genotypes, haplotype estimation and computation of the
LD measure, r2, are performed using the R package
“genetics“. We carried out 10,000 simulation replica-
tions under this scenario, and the proportion of replica-
tions with Nr2 greater than the cutoffs from the
empirical distribution from the simulations under null
hypothesis of no LD is taken as an estimate of empirical
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power. We compare our approach with two previous
methods for testing LD, allowing for unknown haplo-
type, namely, the method by Weir [8] and the method
based the asymptotic distribution [11]. We apply their
tests to the same simulated samples to get the corre-
sponding estimate of power. The cutoffs are based on
the empirical distribution of the Nr2 under the null
hypothesis of D’ = 0. We compute the empirical power
for various values of D’ ranging from 0 to 0.25 at signifi-
cance level a = 0.05, 0.01 and 0.001.

Results
Simulation study
We perform simulations to study the effect of haplotype
estimation on the distribution of the test statistic Nr2

and compare it with the expected χ2
1-distribution when

haplotypes are known. For the two-biallelic SNPs in our
model, only double heterozygotes have uncertain haplo-
types. To maximize the effect of haplotype uncertainty,
we set the p1 = q1 = 0.5 so that the double heterozygote
frequency is maximized. We simulate 10,000 replica-
tions, each of which has 1,000 individuals, with geno-
types at 2 SNPs under HWE and null hypothesis of no
LD. The proportion of replications with test statistic
greater than the quartiles from the χ2

1-distribution is
taken as an estimate of the empirical type-I error rate.
Table 1 gives the empirical type-I error rates evaluated
at several levels.
It is evident from Table 1 that the type-I error rate is

inflated if we use the c2 test ignoring the uncertainty in
haplotype estimation. At 0.05 level, type-I error rate is
inflated by 5.72 times. It is inflated even further as the
level of the test decreases. At 0.001 level, it is inflated by
166.2 times. This suggests that for samples with
unknown haplotypes, the actual distribution of the test
statistic differs drastically from the χ2

1-distribution, espe-
cially under the tail, and therefore, using the usual c2

test will result in grossly erroneous conclusions.
Table 1 also gives the empirical type-I error rate

under HWD. Similar to the case of HWE, type-I error
rate is inflated. It is inflated further as the level of test
decreases. At 0.05 level, it is inflated by 6.23 times and
at 0.001 level, it is inflated by as much as 192.3 times.
Compared to the result under HWE, type-I error rate is

inflated further. This is probably due to the fact that
HWD could bias the haplotype estimate. Therefore, our
results suggest that the additional variability brought by
the haplotype estimation makes the distribution of the
test statistic differs drastically from the expected χ2

1-dis-
tribution regardless of whether the SNPs are in HWE or
not. Since we could generate the empirical distribution
of the LD measure r2 under the null hypothesis, a direct
test of LD could be based the empirical distribution
rather than relying on erroneous assumptions.

Power Analysis
Power analyses are performed for the Monte Carlo-
based tests based on 10,000 simulated samples, each
containing 1,000 individuals under both HWE and
HWD. Table 2 gives the power estimates for the simula-
tions under HWE, at 3 significance levels, 0.001, 0.01
and 0.05.
We change the level of LD by varying D’ from 0 to

0.25. As shown in Table 2, the power of the Monte
Carlo-based test increases quickly as D’ increases. It
reaches the perfect power of 1.0 at D’ = 0.2 for a = 0.05
and a = 0.01. We apply the test based on composite LD
to the same simulated data set for the purpose of power
comparison. Table 2 also gives the power estimates for
the test based on composite LD (labeled as “comp-LD”
in the table) and the test based on asymptotic distribu-
tion (labeled as “asym-LD” in the table). It is obvious
from Table 2 that the power of our test is comparable
to the test based on composite LD, though our pro-
posed method has a slight advantage. The test based on
asymptotic distribution has the lowest power among the
there tests.
Table 3 gives the power analysis results based on

10,000 simulated samples with 1,000 individuals each,
under HWD. Similar to the results under HWE, the
power of the Monte Carlo-based test increases quickly
with increasing LD between the two SNPs. The power
reaches 1.0 for D’ = 0.15 at 0.05 level and for D’ = 0.2
at 0.01 level. Our test also has comparable power with
the test based on composite LD with our Monte Carlo-
based test having a slight power advantage.
We have implemented the Monte Carlo-based test in

R. The program can be downloaded from the author’s
website at http://www.biostat.mcg.edu/~hxu/software/
ldtest.zip.

Application
We apply our LD test to the SNP data from the gen-
ome-wide association study of the North American
Rheumatoid Arthritis Consortium (NARAC). The
NARAC sample consists of 868 Rheumatoid Arthritis
cases and 1,194 healthy controls. The total data set

Table 1 Type-I error rate using χ2
1 test with unknown

haplotypes

HWE HWD

Level Type-I error Inflation factor Type-I error Inflation factor

0.05 0.2859 5.72 0.3116 6.23

0.01 0.2252 22.52 0.2458 24.58

0.001 0.1662 166.2 0.1923 192.3
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contains 545,080 SNP-genotypes from the Illumina
550K chip. To illustrate the applicability of our test, we
randomly choose 2 pairs of SNPs with different physical
distance. The distance between rs3094315 and
rs12562034 is 15.9 k basepairs and that between
rs3094315 and rs11807848 is 308.7 k basepairs. The
estimated r2 and the p-value from our test are presented
in Table 4. We perform the test in the cases and con-
trols separately. It can be seen from the results in Table
4 that the LD patterns can be different in cases and
controls.

Discussion
Testing the significance of LD between SNPs is of fun-
damental importance for genetic association studies.
One popular measure of LD is r2. However, as shown in
our simulations, for most population-based samples
when the haplotypes are not known, the additional
variability of haplotype estimation makes the traditional
c2 test inapplicable. The departure form the assumed
χ2
1-distribution is more severe in extreme tails. This

makes the c2 test even more problematic as extremely

low significance levels are usually used to account for
the effect of multiple testing in genome-wide studies. In
this report, we propose a simple LD test based on the
null distribution of the test statistic Nr2 from simula-
tions, taking advantage of the increasingly available
computing powers. Unlike the test based on a composite
LD measure, the Monte Carlo test is directly based on
the distribution of the popular LD measure r2 and can
be report together with r2. As shown in the results sec-
tion, our test has similar or slightly increased power
compared to the test based on composite LD. The test
is easily implemented in R. It works well with existing R
packages and suitable for automation in large-scale gen-
ome-wide studies. A likelihood ratio test of LD using
genotype data with unknown haplotypes has been devel-
oped by Slatkin et al. [14]. Similar to our approach, the
null distribution of their test statistic is generated using
computer-based permutations. However, the likelihood
ratio test assumes HWE, while our test works well
under either HWE or HWD. Nonetheless, similar to
other permutation or bootstrap-based approach, the
payoff of our approach is the computer running time,

Table 2 Power comparison of our test and two previous tests from simulations under HWE

a = 0.05 a = 0.01 a = 0.001

D’ our test comp-LD asym-LD our test comp-LD asym-LD our test comp-LD asym-LD

0 0.0500 0.0540 0.052 0.0100 0.0103 0.0105 0.0010 0.0011 0.0011

0.025 0.1232 0.1209 0.1201 0.0356 0.0324 0.0316 0.0059 0.0052 0.0048

0.05 0.3504 0.3468 0.3452 0.1564 0.1467 0.1455 0.0429 0.0386 0.0372

0.075 0.6696 0.6656 0.6643 0.4238 0.4095 0.4081 0.1810 0.1706 0.1659

0.1 0.8895 0.8847 0.8803 0.7200 0.7083 0.7051 0.4474 0.4325 0.4188

0.125 0.9814 0.9794 0.9726 0.9243 0.9218 0.9194 0.7598 0.7500 0.7259

0.15 0.9982 0.9979 0.9939 0.9875 0.9873 0.9869 0.9319 0.9301 0.9286

0.175 0.9998 0.9996 0.9992 0.9978 0.9975 0.9969 0.9875 0.9868 0.9856

0.2 1.0000 1.0000 1.0000 0.9999 0.9999 0.9997 0.9990 0.9988 0.9987

0.225 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9997 0.9995

0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3 Power comparison of our test and two previous tests from simulations under HWD

a = 0.05 a = 0.01 a = 0.001

D’ our test comp-LD asym-LD our test comp-LD asym-LD our test comp-LD asym-LD

0 0.0500 0.0505 0.0503 0.0100 0.0102 0.0103 0.0010 0.0013 0.0012

0.025 0.1538 0.1523 0.1519 0.0553 0.0516 0.0508 0.0122 0.0093 0.0088

0.05 0.4643 0.4642 0.4638 0.2480 0.2372 0.2366 0.0888 0.0752 0.0732

0.075 0.8006 0.8000 0.7897 0.5984 0.5858 0.5836 0.3388 0.3057 0.3021

0.1 0.9612 0.9610 0.9607 0.8838 0.8783 0.8779 0.7047 0.6728 0.6705

0.125 0.9958 0.9957 0.9952 0.9811 0.9799 0.9781 0.9267 0.9119 0.9106

0.15 0.9999 0.9999 9.9998 0.9987 0.9984 9.9981 0.9912 0.9899 0.9883

0.175 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9997 0.9995

0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.225 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Xu and George BMC Research Notes 2011, 4:124
http://www.biomedcentral.com/1756-0500/4/124

Page 5 of 7



which is generally not a major concern as computing
power increases.
Using simulations, we have considered the effect of

haplotype estimation using the maximum-likelihood
approach implemented in the R package “genetics“
and showed that the additional variability brought by
the haplotype estimation process cannot be safely
ignored. This is an example of single imputation in sta-
tistics literature. Similarly, haplotype phase uncertainly
can lead to problems in haplotype-phenotype association
studies. In these studies, it is tempting to estimate hap-
lotypes from genotype data using the existing haplotype
estimation methods and assign the individuals with the
most likely haplotype pair (or the pair with the highest
posterior probability if a Bayesian method is used). The
assigned haplotype pairs are then treated as true haplo-
types in downstream association analyses. This two-
stage approach, though simple, can lead to erroneous
inference about the haplotype-phenotype association.
Simulation studies have shown that this approach can
lead to substantial bias in the estimated genetic effects,
poor coverage of confidence intervals, and significant
inflation of type I error [15-17]. For further discussions,
please see [18] and [19]. Several methods have been
developed to account for the uncertainty in haplotype
estimation in the haplotype-phenotype association set-
ting, including the expectation-substitution method [20]
and the likelihood-based approach [21-23]. The latter
involves the calculation of the variance-covariance
matrix of the estimates based on the observed informa-
tion matrix and has been implemented in the haplo.
glm() function in the R package “haplo.stats“ [22]
and the program “HAPSTAT“ [18].
Besides the maximum-likelihood method examined in

the study, there are other more sophisticated methods
for haplotype estimation that utilized high-density mar-
ker information, e.g. [24]. In humans, one can also uti-
lize the information from large international
collaborative efforts such as HapMap [25] and 1000
Genome Projects [26] for better haplotype estimation. It
should be noted that our test is not novel but based on
standard re-sampling procedure. However, the general
simulation framework can be used to study the effect of
other haplotype estimation methods because this is a
two-step procedure. In the first step, the sample geno-
types are simulated under the null hypothesis of no LD.

The samples are then analyzed in the second step for
haplotype estimation and computation of the final test
statistic. Notice that we can use whatever method for
haplotype estimation that are applicable in the second
step. Therefore, the general simulation framework is
rather flexible and can easily be extended to study the
effect of other haplotype estimation methods. For exam-
ple, in our study, we considered the haplotypes at 2 bi-
allelic loci. It is straightforward to extend it to the cases
with multiple SNPs. In the first step, genotypes at multi-
ple SNPs can be generated using the standard bootstrap
approach. In the second step, haplotypes at multiple
SNPs can then be estimated using haplotype estimation
methods for high-density markers. This approach could
potentially offer some advantages over the likelihood
approach because it relies on the empirical distribution
of the final test statistic rather than the normal distribu-
tion. Indeed, simulation studies have shown that the
likelihood based approach has strong bias away from the
null hypothesis when haplotype diversity is high [19].

Conclusion
We develop and implement a test of LD for population
data when the haplotypes are unknown. It is directly
based on the empirical distribution of r2, the measure of
LD, and uses a Monte-Carlo approach. The test is easy
to use and provides an alternative way to testing for LD
for SNP data. It also provides a framework to study the
effects of other haplotype estimation approaches.
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