
RESEARCH ARTICLE Open Access

Improved haplotype-based detection of ongoing
selective sweeps towards an application in
Arabidopsis thaliana
Torsten Günther* and Karl J Schmid

Abstract

Background: The increasing amount of genome information allows us to address various questions regarding the
molecular evolution and population genetics of different species. Such genome-wide data sets including
thousands of individuals genotyped at hundreds of thousands of markers require time-efficient and powerful
analysis methods. Demography and sampling introduce a bias into present population genetic tests of natural
selection, which may confound results. Thus, a modification of test statistics is necessary to introduce time-efficient
and unbiased analysis methods.

Results: We present an improved haplotype-based test of selective sweeps in samples of unequally related
individuals. For this purpose, we modified existing tests by weighting the contribution of each individual based on
its uniqueness in the entire sample. In contrast to previous tests, this modified test is feasible even for large
genome-wide data sets of multiple individuals. We utilize coalescent simulations to estimate the sensitivity of such
haplotype-based test statistics to complex demographic scenarios, such as population structure, population growth
and bottlenecks. The analysis of empirical data from humans reveals different results compared to previous tests.
Additionally, we show that our statistic is applicable to empirical data from Arabidopsis thaliana. Overall, the
modified test leads to a slight but significant increase of power to detect selective sweeps among all demographic
scenarios.

Conclusions: The concept of this modification might be applied to other statistics in population genetics to
reduce the intrinsic bias of demography and sampling. Additionally, the combination of different test statistics may
further improve the performance of tests for natural selection.

Background
The recent advent of genome-wide surveys of genetic
variation provides the opportunity to study genome-
wide patterns of selection in model species. Such gen-
ome-wide scans detected new candidate regions for
positive selection as well as previously identified target
genes for selection, which included the lactase gene in
European humans [1] or FRIGIDA in Arabidopsis thali-
ana [2].
Based on the assumption that the frequency of a new

advantageous allele increases rapidly and that extended
linkage disequilibrium (LD) around the selected site is
expected [3,4], several tests for selective sweeps were

designed in the last years [1,2,5-9]. The power of detect-
ing selection with these haplotype-based tests was esti-
mated to be higher than with frequency-based statistics
as Tajima’s D [1]. Although it is known that demo-
graphic history may cause a similar departure from the
neutral model than selective sweeps and that test statis-
tics are highly sensitive to these scenarios [10-14], only
the pairwise haplotype sharing score (PHS, [2]) corrects
for demographic history and relatedness. Unfortunately,
because of pairwise comparisons between individuals for
each allele, calculating the PHS has a complexity of O
(n2) and is infeasible for large present and future data
sets. However, since demography and unequally related
individuals introduce a bias and potentially cause flawed
results in sweep detection, a correction is required.
Population structure also confounds genome-wide
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association studies and several approaches were devel-
oped to circumvent these problems [15]. The ideal sam-
ple for an association study as well as for scans for
selective sweeps consists of equally related individuals
with a star-like phylogeny. For samples from natural
populations this assumption is unrealistic.
In order to correct for demographic effects in haplo-

type-based detection of ongoing selective sweeps, we
modified the integrated haplotype score (iHS) statistic
introduced by Voight et al. [1] by weighting the contri-
bution of each individual according to its genetic simi-
larity to all other individuals in the sample. Closely
related individuals generally share more alleles and hap-
lotypes because of common ancestry. The concept of
weighting to account for an unequally related sample is
already established in other fields of evolutionary analy-
sis. It was introduced as branch-proportional sequence
weighting in the construction of sequence profiles from
homologous proteins [16] and also has been shown to
improve the accuracy of multiple sequence alignments
in CLUSTALW [17]. Here, we describe the weighted
iHS (WiHS) method as an improved test statistic to
detect ongoing selective sweeps. We utilize coalescent
simulations of different complex demographic scenarios
to estimate the detection power and the false discovery
rate of the new method and compare it to existing
methods. Finally, we apply the modified test statistic to
empirical data from Arabidopsis thaliana and humans.

Materials and methods
Test statistic to detect selective sweeps
The new test statistic is based on the integrated haplo-
type score (iHS, [1]). The iHS is derived from the
extended haplotype homozygosity (EHH, [4]) and
assumes that selected haplotypes will be longer than the
haplotypes around non-selected alleles in the same
region because of hitchhiking of linked variation with
the selected mutation. The EHH is defined as the prob-
ability that two haplotypes with the same core allele at
position x are identical over the complete interval
between the core site and a position y. The original
EHH considers all individuals as equally weighted in the
computation of the score.
We modified the EHH to account for unequally related

individuals or population structure in the sample by uti-
lizing a matrix of pairwise distances between all indivi-
duals. For the present paper, we calculated the squared
genome-wide Hamming distance inferred from the geno-
types, which performed well in accounting for relatedness
in genome-wide association studies [18], but in general
any distance metric is applicable. From pairwise distances
we derive a measurement of the uniqueness, U, of each
individual, I, to characterize the differences of an indivi-
dual to a set of other individuals and then the

contribution of each individual to the test statistic is
weighted based on its uniqueness. We define U as

Ux(I) =
Dx(I)∑

Ii∈X
Dx(Ii)

,

where Dx(I) is the average pairwise distance of indivi-
dual I to all other individuals carrying the same core
allele at position x and X is the set of these individuals.
Note that the sum of all uniquenesses for a certain allele
is always

∑m
i=1 Ux(Ii) = 1, therefore only the relative

weighting between individuals changes, which depends
on the set of individuals carrying the same core allele at
position x. Such weighting leads to a higher effect of
less close related individuals on the test score and thus
aims to reduce the bias in the sweep detection caused
by unequal relatedness in the sample. The weighted
EHH (wEHH) at position y is then computed for all
sites with a minor allele frequency of more than 5% as

wEHHx(y) =
∑
h∈H

∑
Ii∈h U(Ii) × m

n
×

∑
Ii∈h U(Ii) × (m − 1)

(n − 1)
,

where h is a set of individuals carrying the same hap-
lotype between x and y, H is the set of all haplotypes, m
is the number of individuals carrying the same core
allele at position x and n is the total sample size. For
the classical EHH calculation, ΣU(Ii) is replaced by the
constant 1.
The subsequent steps are then identical to the original

iHS approach [1]. We integrate under the wEHH decay
around the specified core allele until wEHH reaches
0.05 using the trapezoidal rule. The integrated wEHH
(iwEHH) is the sum of this integral in both directions
from the core allele using distances on a genetic map to
the core site to correct for different local recombination
rates. The iwEHH is computed for both, the ancestral
and derived allele, at position x, resulting in iwEHHA

and iwEHHD, respectively. The unstandardized test sta-
tistic of the weighted integrated haplotype score, WiHS
hereafter, is then computed as

unstandardized WiHS = log
(
iwEHHA

iwEHHD

)
.

This score is negative if the derived haplotype is larger
than the ancestral haplotype and positive if the ancestral
haplotype is larger. Since young, low frequency haplo-
types are generally longer than old, high frequency hap-
lotypes, we obtain a standardized score for the allele
frequency f as follows

WiHS =
unstd. WiHS - meanf(unstd. WiHS)

SDf (unstd. WiHS)
,
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where meanf is the mean score of all sites with the
frequency f and SDf is the associated standard deviation.
Python scripts used for the tests are available from

http://evoplant.uni-hohenheim.de

Simulation of selective sweeps
To assess the power of our method to detect selective
sweeps, we applied it to simulated data sets. We simu-
lated populations using the coalescent simulator msms
[19] and sampled 100 chromosomes of 2 Mbp from the
data. 4,000 SNPs with a minor allele frequency ≥ 0.05
were randomly selected from all simulated mutations.
This sampling scheme corresponds roughly to the SNP
density analyzed with SNP arrays in A. thaliana [20].
For each simulation run, a single site under positive
selection without recurrent mutations was simulated
and realistic mutation and recombination rates from A.
thaliana were used [21,22]. The simulation parameters
are summarized in Table 1. To compare the new
method to other haplotype based tests for selective
sweeps, we additionally computed the unweighted iHS
[1] and the pairwise haplotype sharing score (PHS, [2])
for the simulated data sets, using the same standardiza-
tion for allele frequency in all tests. For all simulations,
a constant recombination rate without recombination
hotspots was assumed. The selection coefficient was set
to 2Nes = 200, other values are mentioned in the corre-
sponding sections of the paper.
To evaluate the performance of the modified test sta-

tistic on different demographic and selection scenarios,
we simulated four different models: a panmictic popula-
tion, an island model of two subpopulations with migra-
tion, an exponential population growth model which
represents a realistic model for the European metapopu-
lation of A. thaliana (growth model C from [23] with
parameters scaled according to our population size), and
a recent bottleneck (see Figure 1).
To assess whether high scoring SNPs cluster around

the selected site, the absolute values of the scores were
averaged in a window of ±25 SNPs around the selected
site. These values were then used as final test statistic
and compared to a null distribution estimated from neu-
tral simulations of the panmictic model.

Application to empirical data sets
We applied our new test statistic to two empirical data
sets. The first data set was HapMap 2 [24] of the East
Asian (JPT+CHB), European (CEU) and Yoruba (YRI)
populations consisting of 120 chromosomes from each
population. We included all SNPs for which an ancestral
state was available from dbSNP 130 [25]. The estimated
recombination rates were downloaded from the Hap-
Map project and a polynomial curve was fitted to the
markers for conversion between physical and genetic
distances. Additionally, we analyzed SNP data from 199
A. thaliana accessions genotyped at approximately
220,000 SNP sites [20]. The alleles were polarized using
the genome of the related species Arabidopsis lyrata

Table 1 Parameters for the msms simulations

Parameter Value

Sequence length l 2,000,000 bp

Sample size n 100

Population scaled mutation rate (per site) θ 6 · 10-3

Population scaled recombination rate (per site) r 8 · 10-4

Effective population size Ne 1,000

Number of sampled SNPs 4,000

A

Ne = 500 Ne = 500

Nm

Nm

B

t1 = 2.19 · 10−2 · 2Ne

t2 = 9.12 · 10−3 · 2Ne

N0 = 1000

N1 ≈ 2322

C

t1 = 0.02 · 2Ne

t2 = 0.01 · 2Ne

Ne = 1000

Ne = 1000

Ne = 200

Figure 1 Simulation models. The demographic models used in
the simulations included an island model (A), exponential
population growth (B) and population bottleneck (C). The
parameters of (B) are adjusted to a model by [23]. Time is given in
units of 2Ne generations.
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[26]. For conversion from physical to genetic distances,
we fitted a polynomial curve to 253 markers, for which
physical and genetic positions are known [12]. All gene
annotations were obtained from TAIR version 8 [27].

Results
Comparison of sweep statistics
We restricted the comparison of our statistic to its clo-
sest relatives, the iHS and the PHS statistics. To our
knowledge, the PHS is the only test with a correction
for relatedness. As a basic model, we simulated a pan-
mictic population. First, we checked the ranking of the
selected sites based on their absolute scores. The mean
rank of the causal SNP out of all 4000 SNPs was 195.9
(±17.6), 193.3 (±17.4) and 455.68 (±27.4) for iHS, WiHS
and PHS, respectively. The difference between iHS and
WiHS was not significant (pairwise Wilcoxon-test; p =
0.85). The relatively poor ranks show that a single SNP’s
score may be a bad identifier for a selective sweep.
Therefore, we use the averaged absolute scores in a win-
dow of ±25 SNPs around the selected site as test statis-
tic. This is similar to the approach chosen by Voight et
al. [1]. It takes the hitchhiking variation into account,
which is a important advantage if the causal site is not
genotyped [1]. The power to detect a sweep using either
of the three tests is highly variable across different allele
frequencies (Figure 2). None of them is able to distin-
guish low frequency sweeps from neutral variation. The
change in power is similar across different allele

frequencies: both weighted and unweighted integrated
scores show nearly identical graphs with a maximum
power at an allele frequency between 60% and 80%,
whereas the PHS test generally has a lower power for all
frequencies and achieves its maximum between 80% and
90%. While the maximum power clearly differs at a sig-
nificance level of a = 0.01 with WiHS having the high-
est and PHS having the lowest power, it is nearly
identical for all three tests at a = 0.05 (data not shown),
which is consistent with previous findings that the iHS
has a high specificity [28].
A comparison of the iHS and WiHS tests shows that

WiHS performs better than iHS for allele frequencies >
40% even in panmictic populations. As the power itself is
based on a single stringent threshold for the test score
based on a significance level, we compared the normalized
test scores between iHS and WiHS directly and found that
WiHS assigns higher absolute scores to the SNPs sur-
rounding the selected site (pairwise Wilcoxon-test, p < 10-
15). The scores around neutral sites are essentially identical
for both tests (Additional File 1 Figure s1), which is
expected for normalized scores. Thus, this difference
demonstrates a better performance of WiHS in the detec-
tion of selective sweeps. While the absolute power
decreased for selection weaker than 2Nes = 200 (Figure 4),
a difference between iHS and WiHS was still observed and
significant (pairwise Wilcoxon-test; p < 10-6, p < 10-10 and
p < 10-15 for 2Nes = 50, 2Nes = 100 and 2Nes = 150,
respectively). This difference is a consequence of the sam-
pling process, because it is impossible to sample geneti-
cally equidistant individuals and therefore even random
samples of a panmictic population exhibit a certain degree
of structure. The weighting corrects for this bias and
improves the power of selection tests.
As the number of markers and individuals commonly

used in sweep detection is rapidly growing, the running
time of algorithms is becoming a limiting factor. We
compared running times of all tests on simulated data
sets and stepwise increased the number of analyzed chro-
mosomes. Both integrated scores scale linearly, whereas
PHS scales quadratically with the number of chromo-
somes (Figure 3). Since the PHS test is based on pairwise
comparisons between individuals for each site, it is ineffi-
cient in running time and memory usage (not shown) for
large data sets, while iHS and WiHS still have reasonable
running times for data sets with thousands of individuals
genotyped at hundreds of thousands of sites. However,
sample sizes around 100 seem to be adequate for a rea-
sonable power under panmictic scenarios, at least for the
detection of strong selection (Additional File 1 Figure s2).

Performance under different demographic scenarios
The recent inclusion of selection in coalescent simula-
tion software [19] permitted us to test WiHS under
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Figure 2 Power to detect selective sweeps. Detection power at a
significance level of a = 001 based on the average score of all SNPs
in a ±25 SNPs window around the selected site. For each allele
frequency, 200 data sets were simulated and analyzed with all three
tests. The null distribution was estimated in 1000 simulations
without a selected site.
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different demographic scenarios. First, an island model
of two equally sized populations with varying migration
rates was simulated (Figure 1A). Three different migra-
tion rates of 4Nem Î {4, 40, 400} corresponding to a
population differentiation of FST between 0.0025 and 0.2
were simulated [29]. Higher levels of differentiation
between populations are also possible, but in these cases
a cross-population test (e.g. [8,9]) is more practical. The
results suggest a marginally higher power of WiHS for
all three migration rates (Figure 4) with significantly
higher scores around the selected site (pairwise Wil-
coxon-test; p < 10-11, p < 10-15 and p < 10-15 for 4Nem
= 4.0, 4Nes = 40 and 4Nem = 400, respectively). The
absolute power for all three migration rates is higher
than observed under panmixia (Figure 4). Since there is
no reason to expect such pattern, this may hint at an
artifact in the simulations.
Additionally, a model of exponential population growth

followed by a constant population size was simulated
(Figure 1B). The model by [23] resembles the population
history of European A. thaliana accessions. Therefore,
we regard these simulations as a test case for the analysis
of empirical data from A. thaliana. Compared to the pan-
mictic model, the detection power was decreased by
more than 20% (Figure 4). Nevertheless, WiHS had a
power 5.5% higher than the power of iHS and the scores

around the selected site were significantly higher for
WiHS (pairwise Wilcoxon-test; p < 10-9). For the bottle-
neck model, a previously panmictic population was
reduced to one fifth of its size with a later recovery to the
original population size (Figure 1C). The bottleneck led
to the strongest decrease in detection power (Figure 4),
but WiHS still performed better and scored the SNPs in
the sweep region higher (pairwise Wilcoxon-test; p < 10-
8). For models with a non-constant population size,
which is the case in the growth and bottleneck model,
msms requires a defined start time of the selective sweep.
The sweeps were initiated directly before the bottleneck
or the start of population growth for the simulations
above. Simulating different starts for the sweep showed
no trend in the relation between time and detection
power in both scenarios (Additional File 1 Figures s3, s4).
Biases introduced by demography are supposed to

affect both the detection power and the number of false
positives. To check for such biases, we used neutral
simulations of all demographic models and calculated
the false discovery rate (FDR) if the cutoffs were esti-
mated from a panmictic model. The FDRs differ only
marginally between iHS and WiHS (Figure 5). In gen-
eral, the FDR at a nominal significance level of 0.01 is
only slightly elevated, ranging form 0.010 to 0.018 for
the island and bottleneck model, respectively (Figure 5).
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Figure 4 Detection power under different demographic scenarios and parameters. The power was estimated as the number of detected
sweeps divided by the number of simulated sweeps. For each scenario, 200 simulations of sweeps with a present derived allele frequency
between 60% and 80% were conducted.
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Selective sweeps in the HapMap data
To apply our new test statistic to empirical data, we re-
analyzed 690,566, 748,881 and 709,542 HapMap2 SNPs
[24] from the JPT+CHB, YRI and CEU populations,
respectively. As numerous maps for positive selection in
humans have been published earlier (reviewed by [30]),
we were mainly interested in differences between the
iHS and the WiHS tests instead of presenting an addi-
tional map of sweeps. We selected the 27 most relevant
candidate genes or gene clusters that were previously

identified as sweep regions and discussed in iHS studies
of the particular populations [1,8,31]. Some of the candi-
date regions were regarded as sweep candidates in more
than one population, therefore we investigated 34
regions in total (see Table 2). Scores were computed for
all SNPs and then the average absolute score was esti-
mated in a sliding window approach (50 SNPs window
size, 20 SNPs offset between windows). Twenty out of
the 34 regions were ranked among the genome-wide 5%
highest scoring windows by both tests. We expected no
complete overlap, since these candidates were identified
in different data sets using different methods [30]. The
WiHS test ranked 17 candidates better than the iHS
while the latter test ranks eleven regions higher. The
remaining six candidates were ranked identical. Sum-
ming up for all candidate regions, the ranking by WiHS
was marginally improved in comparison to iHS (pairwise
one-sided Wilcoxon-test, p < 0.1). The top 100 ranked
windows differ only slightly between both tests (data not
shown).

Selective sweeps in the A. thaliana data
As the one of the highest power differences was
observed for the growth model, the simulations indicate
that WiHS offers an increased power for the analysis of
data from A. thaliana. As a showcase for a genome-
wide scan for selection in A. thaliana, we analyzed a
genome-wide SNP data set of 220,000 SNPs from 199
accessions [20]. After WiHS was calculated for all SNPs,
the genome was divided into non-overlapping windows
of 50 SNPs and the absolute scores in these windows
were averaged (Figure 6). A co-occurrence analysis of
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Figure 5 False discovery rate under different demographic scenarios and parameters. The FDR was estimated as the number of detected
sweeps divided by the number of analyzed windows in simulations without selection. The dashed line represent the nominal significance level
of 0.01. For each scenario, 200 simulations were conducted.
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molecular function and biological process GO terms
among the top 100 windows using GeneCoDis [32]
revealed several over-represented categories (Additional
File 1 Table s1). They include some categories that are
of particular interest when looking for selection candi-
dates. These categories comprise response to external
and internal stimulus (e.g. auxin, light, salt stress) and
flower development. The highest ranked term is the
molecular function ‘chitinase activity’, some chitinases
have been associated with pathogen response in A. thali-
ana [33].
In addition, a more detailed look was taken at the

genes among the top 6 windows (Figure 6). The top

ranked window overlaps with a region on chromosome
3 that was previously suggested as a sweep candidate
[34]. This window includes ARR5, a gene involved in
the cytokin signaling pathway, whose mutant shows a
reduced rosette size and an increased sensitivity to red
light. The windows ranked second and third contain
FKF1, an F-box protein which is involved in the regula-
tion of flower development and response to blue light,
and ANN5, which is contributing in the response to
heat, cold, salt stress, red light and water deprivation.
Finally, the fourth and sixth ranked regions on chromo-
some 4 comprise LUG1, a regulator of AGAMOUS
involved in the flower development.

Discussion
Detection of selective sweeps
Even in unstructured populations, sampling and relat-
edness introduce a bias into the sample. We improved
the accuracy of detecting selective sweeps with haplo-
type based methods by weighting the contribution of
each individual to the statistic according to its unique-
ness in the sample. The improvement was observed in
all simulated demographic scenarios including a pan-
mictic population, a model of two subpopulations,
exponential population growth and a population bot-
tleneck. The increase of detection power of WiHS
compared to iHS was less than expected but signifi-
cant, reaching a maximum of 6.5%, 1%, 5.5% and 1.5%
in the panmictic, island, population growth and bottle-
neck models, respectively. Simulation of different mod-
els and different model parameters, such as more
severe bottlenecks, may give different results than the
simulations in this study. The highest improvement
was achieved in panmictic and growing populations.
As the latter scenario was previously fitted to Eur-
opean accessions of A. thaliana [23], our improvement
can result in additional sweep candidates for this spe-
cies. While the detection power decreased in the more
complex models, there was no significant increase of
FDR if the sample was incorrectly assumed to arise
from a panmictic population. As iHS and WiHS are
genome-wide normalized scores, an excess of extreme
scores and false positives under different demographic
models is avoided.
The presented approach corrects for genome-wide

IBD by upweighting more unique individuals in the
sample. Since selective sweeps generate locally elevated
IBD, which was suggested as a test for selection [35],
one could also think of an opposite weighting based on
local IBD. Local weighting would require the calculation
of an IBD matrix for every single region, causing numer-
ous pairwise comparisons between individuals and
inflating the running time, which is beyond the scope of
this paper.

Table 2 Ranking of previously reported candidate genes
in Human HapMap2 data

Gene(s) Population piHS pWiHS

NCOA1, ADCY3 YRI 0.003275 0.003189

SNTG1 YRI 0.023862 0.024517

ITGB4BP, CEP2, SPAG4 YRI 0.002392 0.002392

SYT1 YRI 0.115920 0.115265

RSBN1 YRI 0.062787 0.063043

CPEB2 YRI 0.252285 0.250491

FZD6 YRI 0.032490 0.032546

CHST5, ADAT1, KARS YRI 0.146274 0.145904

LARGE YRI 0.000598 0.000598

NCDN, TEKT2 CEU 0.001258 0.001228

LCT CEU 0.000491 0.000552

SNTG1 CEU 0.001136 0.001136

ITGB4BP, CEP2, SPAG4 CEU 0.000583 0.000491

CYP3A5 CEU 0.597489 0.594758

SLC24A5 CEU 0.718933 0.714145

OCA2 CEU 0.091950 0.092533

TYRP1 CEU 0.008962 0.008900

ERBB4 CEU 0.117822 0.115827

NRG3 CEU 0.072522 0.072308

ODF2 CEU 0.874075 0.869595

ACVR1 CEU 0.067336 0.065095

PDE11A CEU 0.026640 0.027438

SNTG1 JPT+CHB 0.006990 0.007055

ITGB4BP, CEP2, SPAG4 JPT+CHB 0.000755 0.000755

CHST5, ADAT1, KARS JPT+CHB 0.095658 0.095790

PDE11A JPT+CHB 0.081318 0.084665

ERBB4 JPT+CHB 0.020674 0.020641

BLZF1, SLC19A2 JPT+CHB 0.007613 0.007416

SLC30A9 JPT+CHB 0.012404 0.012929

PCDH15 JPT+CHB 0.001477 0.001477

SLC44A5 JPT+CHB 0.002658 0.002789

SULT1C JPT+CHB 0.000525 0.000525

ADH cluster JPT+CHB 0.023037 0.022938

FLJ32745, EDAR JPT+CHB 0.765563 0.756571

The data was analyzed with both tests and the value represents the
proportion of windows with a higher percentage of high scoring SNPs than a
window overlapping with the candidate region.
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Our simulation results extend the findings from pre-
vious studies for other test statistics [13,14,36-38] and
show that haplotype-based tests are sensitive to demo-
graphic scenarios such as population structure and
exponential growth. To identify candidates for selective
sweeps, the search for outlier regions is commonly used,
although they may represent the outliers of a neutral

distribution [30]. Therefore, additional validation using
tests based on other characters than haplotype length,
such as site frequency spectrum [28,39-44] or popula-
tion differentiation [44-46], will increase the reliability of
sweep detections. Recently, compositions of different
statistics have been shown to perform better in the
detection of causal variants than each statistic separately
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Figure 6 WiHS results for the A. thaliana data. WiHS was calculated for all SNPs and then the absolute scores were averaged in windows of
50 SNPs. To highlight the outstanding windows, the values were then exponentiated for this figure. The top six windows are labeled in the
figure. The shaded regions denote the centromeric regions.
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[47-50] and the WiHS statistic might be included in
such composite approaches as well and lead to a further
improvement of these methods.

Recent selection in empirical data sets
The analysis of empirical data sets provides an insight
into the effect of the modification under real conditions.
Among the top scoring windows of the HapMap data,
some prominent candidate regions were found, such as
LCT for lactose metabolism, TYRP1 for skin pigmenta-
tion and SPAG4 for sperm motility. Most but not all of
these genes ranked better by WiHS, so we found only a
weak significance. We are aware of the fact that some of
these genes represent only candidates for positive selec-
tion that have not been validated. The trend suggests
that general long-haplotype pattern in these regions is
better detected by the WiHS and it is still possible that
the ranking generated by WiHS is more accurate in the
identification of selective sweeps.
The A. thaliana results revealed some promising can-

didates for selective sweeps. As the windows are still
quite big, looking for particular candidate genes in these
regions remains some kind of fishing in murky waters.
Therefore, we leave the identification of sweep candi-
dates to further studies, which employ a combination of
different tests and use a more precise estimation of the
genetic map. However, the simulations and the detec-
tion of some interesting genes in our preliminary scan
suggest that WiHS is useful for the detection of selective
sweeps in A. thaliana.

Conclusions
Next-generation sequencing projects will provide suffi-
ciently large data sets for the genome-wide detection of
natural selection in many species (e.g. 1000genomes.org,
1001genomes.org, The Drosophila Genetic Resource
Panel). The upcoming flood of data demands for time
efficient and accurate analysis methods. Several methods
operate with an equal contribution of individuals, which
means that all individuals in the sample are assumed to
be statistically independent. As it is very likely that not
all pairs of individuals share the same most recent com-
mon ancestor, the assumption of independence should
be violated in most biological samples. Thereby,
unequally related individuals introduce a minor but sig-
nificant bias into analyses, because the contribution of
closely related individuals is overestimated while the
contribution of others is underestimated. Such bias may
be increased by demographic history and population
structure. Genome-wide marker data allow to assess the
relationship between individuals. This information can
be used to cope with the dependency and to reduce the
bias in estimates by differentially weighting the contri-
bution of each individual. This concept could be

extended to other unweighted statistics in population
genetics. The consistent improvement across all simu-
lated scenarios shows the general positive effect of dif-
ferential weighting. Nevertheless, the slight increase of
power leaves room for further improvement in the cal-
culation of weights for each individual and the incor-
poration of these weights in test statistics, and for the
detection of selective sweeps in general.

Additional material

Additional file 1: Supplementary Information. The Supplementary
Informations include additional figures and tables.
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