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Abstract

Background: Coenzyme Q10 (CoQ10) is essential for mitochondrial energy production and serves as an antioxidants
in extra mitochondrial membranes. The genetics of primary CoQ10 deficiency has been described in several studies,
whereas the influence of common genetic variants on CoQ10 status is largely unknown. Here we tested for non-
synonymous single-nucleotidepolymorphisms (SNP) in genes involved in the biosynthesis (CoQ3G272S , CoQ6M406V,
CoQ7M103T), reduction (NQO1P187S, NQO2L47F) and metabolism (apoE3/4) of CoQ10 and their association with CoQ10

status. For this purpose, CoQ10 serum levels of 54 healthy male volunteers were determined before (T0) and after a
14 days supplementation (T14) with 150 mg/d of the reduced form of CoQ10.

Findings: At T0, the CoQ10 level of heterozygous NQO1
P187S carriers were significantly lower than homozygous S/S

carriers (0.93 ± 0.25 μM versus 1.34 ± 0.42 μM, p = 0.044). For this polymorphism a structure homology-based
method (PolyPhen) revealed a possibly damaging effect on NQO1 protein activity. Furthermore, CoQ10 plasma
levels were significantly increased in apoE4/E4 genotype after supplementation in comparison to apoE2/E3
genotype (5.93 ± 0.151 μM versus 4.38 ± 0.792 μM, p = 0.034). Likewise heterozygous CoQ3G272S carriers had
higher CoQ10 plasma levels at T14 compared to G/G carriers but this difference did not reach significance (5.30 ±
0.96 μM versus 4.42 ± 1.67 μM, p = 0.082).

Conclusions: In conclusion, our pilot study provides evidence that NQO1P187S and apoE polymorphisms influence
CoQ10 status in humans.

Background
Coenzyme Q10 (CoQ10) is the predominant form of
endogenous ubiquinone in humans. Synthesized in the
mitochondrial inner membrane, CoQ10 is comprised of
a ubiquinone head group attached to a trial of 10 five-
carbon isoprenoid units, that anchors the molecule to
the membranes [1]. Intracellular synthesis is the major
source of CoQ10, however it can also be acquired
through the diet and dietary supplements [2]. CoQ10

acts in the respiratory chain and is necessary for pyrimi-
dine biosynthesis as well as a cofactor of uncoupling
proteins [3]. CoQ10 has been also identified as a

modulator of gene expression [4-6], inflammatory pro-
cesses [7-9] and apoptosis [10,11].
The CoQ10 biosynthetic pathway comprises 10 steps,

including methylations, decarboxylations, hydroxylations
and isoprenoid synthesis and transfer [12]. The elucida-
tion of this pathway was mainly due to studies in respira-
tion-deficient mutans of E. coli and S. cerevisiae [13,14].
In humans, rare genetic variants in genes encoding
enzymes of CoQ10 synthesis causes mitochondrial dys-
function, as CoQ10 carries electrons from complex I and
complex II to complex III in the mitochondrial respira-
tory chain. Several forms of human CoQ10 deficiencies
were characterized by infantile encephalomyopathy, renal
failure, cerebellar ataxia or myopathy [15-17].
The complexity of CoQ10 biosynthesis suggests that

genetic defects in different biosynthetic enzymes or reg-
ulatory proteins may cause different clinical syndromes.
Although several studies have been undertaken to look
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into primary CoQ10 deficiency, the influence of common
genetic variants on CoQ10 status is largely unknown.
Therefore a proof of principle study in humans was per-
formed to associate single nucleotide polymorphisms
(SNPs) in genes encoding proteins of CoQ10 biosynth-
esis, reduction and metabolism with CoQ10 status before
and after supplementation.

Methods
Participants and study design
Sample characteristics of subjects and study design have
been recently described [18]. In short: 54 healthy male
volunteers received 150 mg of the reduced form of CoQ10

(ubiquinol, KANEKA Corporation, Japan) daily in form of
three capsules with each principal meal for 14 days. Fasting
blood samples were taken before (T0) and after (T14) sup-
plementation with ubiquinol from all study participants.
The participants, aged 30.1 ± 6.7 years, had an average
Body Mass Index (BMI) of 24.1 ± 2.5, no history of gastro-
intestinal, hepatic, cardiovascular or renal diseases, a habit
of non- or occasional smoking (≤ 3 cigarettes/day) and
maintenance of usual nutrition habits. The study was
approved by the ethics committee of the Medical Faculty of
Kiel University, Germany, and was conformed to Helsinki
Declaration. All volunteers gave written informed consent.

Genotyping
Genomic DNA was isolated from whole blood samples.
Genotyping of all SNPs investigated (Table 1) was per-
formed with the TaqMan system. Fluorescence was
measured with ABI Prism 7900 HT sequence detection
system (ABI, Foster City, USA).

HPLC analysis
CoQ10 analysis was based on the method of high-pres-
sure liquid chromatography (HPLC) with electrochemical

detection and internal standardisation using ubihydroqui-
none-9 and ubiquinone-9 as standards and has been
described elsewhere [18].

Statistical analysis
Data are expressed as means ± SD. Differences in the
characteristics of the study population between two
genotype groups were examined using the Student
t-test and additionally for CoQ6M406V the c2 -test in a
dominant genetic model. To determine statistical sig-
nificance between all genotypes, test for linear trend in
one way analysis of variance (ANOVA) was performed.
P-values ≤ 0.05 were considered statistically significant
and all statistical analyses were computed using SPSS
(Version 13.0). In order to analyze the impact of non-
synonymous SNPs on the structure and function of
proteins, PolyPhen server [19] was used. For power
calculation, the GPower program (Version 3.1) was
applied.

Results and Discussion
Selection of genes and single nucleotide polymorphisms
In order to identify common SNPs which may be asso-
ciated with the CoQ10 status, we searched in the Hap-
Map data base for non-synonymous variants in genes
which are involved in CoQ10 biosynthesis and metabo-
lism. As shown in table 1, we selected SNPs in the
CoQ3 (rs6925344, C>T, Gly272Ser), CoQ6 (rs8500,
A>G, Met406Val) and CoQ7 (rs11074359, T>C,
Met103Thr) gene. These genes code for enzymes of
CoQ10 biosynthesis. Functional variants [20,21] in the
NQO1 (rs1800566, C>T, Pro187Ser) and NQO2
(rs1143684, T>C, Leu47Phe) gene were also included, as
the encoded NAD(P)H:quinone oxidoreductases are
involved in the recycling of CoQ10. Furthermore they
protect cells from oxidative damage by catalyzing reduc-
tion of carcinogenic quinone compounds to their hydro-
quinone forms [22]. Two SNPs determining the
apolipoprotein E (apoE) haplotypes E2, E3 and E4
(rs429358, rs7412) were further included. Both SNPs led
to an amino acid change from cysteine to arginine at
position 112 (rs429358) and 158 (rs7412), which gives
rise to six possible diplotypes: E2/E2, E2/E3, E2/E4, E3/
E3, E3/E4 and E4/E4. The apoE diplotypes have been
associated with cholesterol metabolism [23,24], athero-
sclerosis [25], inflammation [26], lipid peroxidation [27]
and longevity [28].

Genotype distributions in the cohort
The selected SNPs were genotyped in 54 healthy male
volunteers. The obtained genotype distribution (Figure 1
and 2) were in accordance to the HapMap data: Geno-
type distribution of the CoQ3G272S polymorphism
revealed 38 homozygous for G/G (73%), 13 heterozygous

Table 1 Selected polymorphisms in CoQ3, CoQ6, CoQ7,
NQO1, NQO2 and apoE gene

Gene refSNPida Sequenceb Position Amino acid
change

CoQ3 rs6925344 ACAATAC[C/T]
TGCAATT

exon 6 Gly272Ser

CoQ6 rs8500 AGGTTCC[A/G]
TGAGCCA

exon 11 Met406Val

CoQ7 rs11074359 ATGGTTA[T/C]
GTTCAGG

exon 3 Met103Thr

NQO1 rs1800566 AGTTGAG[A/G]
TTCTAAG*

exon 6 Pro187Ser

NQO2 rs1143684 CATGAAC[C/T]
TTGAGCC

exon 3 Leu47Phe

apoE rs429358 GGACGTG[C/T]
GCGGCC

exon 4 Arg112Cys

apoE rs7412 GCAGAAG[C/T]
GCCTGG

exon 4 Arg158Cys

a: NCBI; b: Applied Biosystems, *antisense.
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for G/S (25%) and 1 homozygous for S/S (2%), while 1
sample failed genotyping. Analysis of the CoQ6M406V

genotype showed 19 homozygous for M/M (36%), 24 het-
erozygous for M/V (44%) and 11 homozygous for V/V
(20%). Genotyping of CoQ7M103T polymorphism revealed
25 M/M (48%), 17 M/T (33%) and 10 T/T (19%) carriers.

Two samples failed genotyping. Concerning the distribu-
tion of the NQO1P187S SNP, 30 persons are carriers of
two P/P alleles (56%), 22 persons were heterozygous with
one P and one S allele (41%) and two participants were
carriers of two S/S alleles (3%). NQO2L47F genotyping
displayed 35 participants were homozygous L/L carriers

Figure 1 Effect of amino acid exchange polymorphisms on CoQ10 plasma levels. SNPs in genes encoding enzymes of the CoQ10 synthesis
pathway (CoQ3G272S, CoQ6M406V, CoQ7M103T) before (T0) and after (T14) ubiquinol supplementation (150 mg/day) in humans are shown. Values
are mean ± SD and n numbers (genotype distribution) are given in brackets. Differences between two genotype groups were examined using
Student t-test and between all genotypes using “test for linear trend” (ANOVA).
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(65%), 15 participants were heterozygous for L/F (28%)
and 4 participants were homozygous F/F carriers (7%).
The genotype distribution of apoE was as follows: 1 per-
son with E2/E2 genotype (2%), 7 persons with E2/E3
(14%), 29 persons with E3/E3 (58%), 11 persons with E3/

E4 (22%) and 2 persons with E4/E4 (4%). For 4 persons,
genotyping of one or both SNPs respectively failed. Thus,
the Apo E genotype distribution in our cohort of 54
healthy men was comparable with previously published
data [29,30].

Figure 2 Effect of NQO1P187S, NQO2L47F and apoE genotype distribution on CoQ10 plasma levels. CoQ10 plasma levels before (T0) and
after (T14) ubiquinol supplementation (150 mg/day) in humans are shown. Values are mean ± SD and n numbers (genotype distribution) are
given in brackets. Differences between two genotype groups were examined using Student t-test (*p ≤ 0.05) and between all genotypes using
“test for linear trend” (ANOVA).
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Association between genotypes and CoQ10 level at
baseline T0 and after supplementation T14 with the
reduced form of CoQ10

As previously described [18], 54 healthy male volunteers
received 150 mg of the reduced form of CoQ10 daily in
form of three capsules with each principal meal for 14
days. This supplementation led to a significant 4-fold
increase in total CoQ10 plasma levels at T14 (4.60 ± 1.55
μmol/L) compared to T0 (0.96 ± 0.31 μmol/L) [18]. As
shown in Figure 1 and 2, SNPs determined in the CoQ7
and NQO2 genes were not associated with total CoQ10

levels. Trend analysis (ANOVA) over all genotype var-
iants of CoQ7M103T and NQO2L47F revealed p values
>0.05 and were therefore considered as not significant.

CoQ3G272S

The COQ3 gene encodes an O-methyltransferase
required for two steps in the biosynthetic pathway of
CoQ10 [31]. Analysing CoQ3 rs6925344 SNP in associa-
tion to plasma CoQ10 levels at T0, no significant differ-
ences between genotypes could be revealed. Yet at T14,
G/S carriers in CoQ3G272S genotype had a higher total
CoQ10 content (5.30 ± 0.96 μmol/L) after supplementa-
tion compared to G/G carriers (4.42 ± 1.67 μmol/L)
with borderline significance (p = 0.082, t-test).

CoQ6M406V

CoQ6 is mapped to human chromosome 14q24.3 and
encodes a monooygenase, which is required in CoQ10

biosynthesis for incorporation of oxygen to the benzo-
quinone ring [32]. CoQ10 plasma levels were not signifi-
cantly changed within genotype distribution of CoQ6
rs8500 SNP before (T0) and after (T14) supplementation.
However, considering total CoQ10 distribution at T0 in a
chi-square cross tabulation as a function of CoQ6
rs8500 genotype (Table 2) a person chi-square c2 value
of p = 0.081 was evident, which again can be considered
as marginal significant. Therefore a power calculation
for CoQ6 genotype rs8500 was conducted using GPower
program (Version 3.1). This disclosed a total of 898
individuals are required to receive 95% power.

NQO1P187S

It has been shown, that NQO1 can generate and main-
tain the reduced state of ubiquinones in membrane sys-
tems and liposomes, thereby promoting their antioxidant
function [33,34]. NQO1P187S SNP was associated with
CoQ10 levels at T0 (P/S versus S/S, p = 0.044). Thus, this
pilot study indicates that Pro187Ser SNP in NQO1 gene
could participate in abnormal CoQ10 metabolism. SNP
prediction of functional effects of human nsSNPs with
structure homology-based method (PolyPhen) revealed a
possibly damaging effect of NQO1P187S SNP with a score
of 0.215. However, genotype distribution of the S/S geno-
type was low (n = 2), which reflects the ethnic variation
of this polymorphism with the highest prevalence of the
S allele in East Asian populations (e.g. 22% prevalence in
Chinese populations) and the lowest prevalence in Cau-
casians (4%) [35]. Furthermore Han et al [36] found a sig-
nificant association of this SNP with carotid artery
plaques in type 2 diabetic patients in east Asian popula-
tions. As this genetic variation may play a more signifi-
cant role in an East Asian rather than in a Caucasian
population, evaluation of the Pro187Ser SNP in associa-
tion with CoQ10 metabolism in an East Asian population
may be preferable.

apoE
Apolipoprotein E (apoE) is a polymorphic multifunc-
tional protein with three common isoforms in humans
(E2, E3 and E4). Presence of the apoE4 allele is asso-
ciated with a 40-50% higher risk of cardiovascular dis-
ease [37]. There is increasing evidence demonstrating
that the apoE4 allele may be associated with elevated
oxidative stress and chronic inflammation [38]. Thus
apoE was considered as a candidate gene explaining var-
iance in CoQ10 status. At T0, total CoQ10 levels were
higher in E4/E4 carriers as compared to all other geno-
type groups, however p values did not reached signifi-
cance (p = 0.065, E2/E3 vs E4/E4, Figure 2). These
results confirm the results found by Battino et al [29] in
a cohort of 106 healthy blood donors. Interestingly, in
our study total CoQ10 levels increased significantly (p =
0.034) in E4/E4 carriers after supplementation (T14),
which has to the best of our knowledge not been shown
so far. Thus, E4/E4 carriers may be more responsive
towards a dietary CoQ10 supplementation than non
E2/E3 carriers. The underlying physiological and/or
molecular mechanisms for this finding still need to be
elucidated.

Conclusions
Taken together, our pilot study with 54 volunteers pro-
vides evidence that NQO1P187S and apoE polymorphisms
may influence CoQ10 status in humans. According to our
results and power calculation, larger cohorts are needed

Table 2 Total CoQ10 distribution in a chi-square
crosstabulation as a function of CoQ6M406V genotype
(rs8500)

Pearson Χ2

CoQ6
(rs8500)

< 0.96
(μmol/L)

> 0.96
(μmol/L)

Total

M/M 7 12 19

M/V+V/V 21 13 34

Total 28 25 53

Person Chi-Square Χ2: p = 0.081

Distribution was calculated according to a dominant model. CoQ10 mean
value of 0.96 μmol/L was used for group classification.
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in further studies to determine the association between
single nucleotide polymorphisms in genes encoding pro-
teins of CoQ10 biosynthesis, reduction and metabolism
and CoQ10 status.
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