
TECHNICAL NOTE Open Access

DOPA: GPU-based protein alignment using
database and memory access optimizations
Laiq Hasan*, Marijn Kentie and Zaid Al-Ars

Abstract

Background: Smith-Waterman (S-W) algorithm is an optimal sequence alignment method for biological databases,
but its computational complexity makes it too slow for practical purposes. Heuristics based approximate methods
like FASTA and BLAST provide faster solutions but at the cost of reduced accuracy. Also, the expanding volume
and varying lengths of sequences necessitate performance efficient restructuring of these databases. Thus to come
up with an accurate and fast solution, it is highly desired to speed up the S-W algorithm.

Findings: This paper presents a high performance protein sequence alignment implementation for Graphics
Processing Units (GPUs). The new implementation improves performance by optimizing the database organization
and reducing the number of memory accesses to eliminate bandwidth bottlenecks. The implementation is called
Database Optimized Protein Alignment (DOPA) and it achieves a performance of 21.4 Giga Cell Updates Per Second
(GCUPS), which is 1.13 times better than the fastest GPU implementation to date.

Conclusions: In the new GPU-based implementation for protein sequence alignment (DOPA), the database is
organized in equal length sequence sets. This equally distributes the workload among all the threads on the GPU’s
multiprocessors. The result is an improved performance which is better than the fastest available GPU
implementation.

Background
Sequence alignment is used to identify regions of simi-
larity between DNA or protein sequences. This similar-
ity may be a consequence of functional, structural or
evolutionary relationships between the sequences. Var-
ious methods are available for local and global sequence
alignment [1]. Heuristics based approaches like BLAST,
FASTA and HMMER [2-4] are fast, but they do not
guarantee an optimal alignment. Although slow in align-
ing long sequences, the Smith-Waterman (S-W) algo-
rithm [5], based on dynamic programming (DP) [6], is a
method that finds an optimal local alignment between
two DNA or protein sequences, i.e. the query sequence
and the database sequence. The usual way of aligning
sequences is to use algorithms like S-W on a small to
medium size clusters of standard CPUs or workstations
[7], but the speedup does not increase linearly with the

number of CPUs due to issues with workload
distribution.
To develop efficient and optimal sequence alignment

solutions, the S-W algorithm has recently been imple-
mented on emerging accelerator platforms such as
FPGAs, Cell/BEs and GPUs [8-14].
In this paper, we present a high performance GPU-

based protein sequence alignment implementation using
database and memory access optimizations. The imple-
mentation is called DOPA and it pre-converts the refer-
ence protein database to a custom GPU format. Like
other GPU implementations, the time consuming matrix
fill step of the S-W algorithm is implemented and accel-
erated on the GPU. The performance is enhanced by
restructuring the entire database and optimizing its
organization.
Furthermore, memory accesses are optimized to elimi-

nate bandwidth bottlenecks. The results demonstrate
that DOPA achieves a performance of 21.4 GCUPS,
which is 1.13 times better than the fastest available GPU
implementation to date.

* Correspondence: l.hasan@tudelft.nl
Computer Engineering Laboratory, Faculty of Electrical Engineering
Mathematics and Computer Science (EEMCS), Delft University of Technology
(TU Delft), Mekelweg 4, 2628 CD, Delft, The Netherlands

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

© 2011 Hasan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:l.hasan@tudelft.nl
http://creativecommons.org/licenses/by/2.0


GPU as a computational platform
Compute Unified Device Architecture (CUDA) is the
hardware and software architecture that enables NVI-
DIA GPUs [15] to execute programs written in C, C++,
Fortran, OpenCL [16], DirectCompute [17], and other
languages. A CUDA program calls kernels that run on
the GPU, as shown in Figure 1. A kernel executes in
parallel across a set of threads, where a thread is the
basic unit in the programming model that executes an
instance of the kernel, and has access to registers and
per thread local memory. The programmer organizes
these threads in grids of thread blocks, where a thread
block is a set of concurrently executing threads and has
a shared memory for communication between the
threads. A grid is an array of thread blocks that execute
the same kernel, read inputs from and write outputs to
global memory, and synchronize between interdepen-
dent kernel calls.
CUDA’s hierarchy of threads maps to a hierarchy of

processors on the GPU. A GPU executes one or more
kernel grids. A GPU consists of multiprocessors that
execute one or more thread blocks, as shown in Figure
1. Multiple thread blocks can be scheduled by the GPU
to run on one multiprocessor sequentially, or in parallel
by using thread switching. CUDA cores, i.e. the proces-
sing elements within a multiprocessor, execute threads

in groups of 32 called warps. Performance on GT200-
class GPUs can be optimized a great deal by having
threads in a half-warp (16 threads) execute the same
code path and access memory in a close vicinity.
In the CUDA parallel programming model various

memory spaces exist [15]. The complete set of CUDA
memory spaces is given in Figure 2, where global mem-
ory is the GPU’s RAM. Accessing it has a high latency,
which can be hidden by switching execution to other
threads that are not waiting for memory accesses.
The second type of memory shown in Figure 2 is the

texture cache. Textures are cached ‘windows’ into global
memory, optimized for spatially local reads.
The third type of memory is the constant cache,

which is a read-only portion of global memory. It is
cached at each multiprocessor and accessing it is as fast
as accessing a register.
The other types of memories are shared memory and

local memory, where shared memory is a fast memory
used for inter-thread communication within a thread
block and local memory is a per thread portion of the
global memory used for function calls and register spills.
Additionally, each multiprocessor offers a bank of regis-
ters, shared between its processors.
Coalescing
Latency of global memory can be avoided altogether by
coalescing memory accesses as shown in Figure 3, where
each thread of a half-warp of 16 threads accesses a 4-
byte value in global memory. The values in Figure 3(a)

Host (PC)

Kernel 
1

Device (GPU)

Grid 1

Kernel
2

Grid 2

Block (1, 1)

Thread
0

Thread
1

- - - - - Thread
31

Thread
0

Thread
1

Thread
31 warp 2

Thread
31

Thread
1

Thread
0

Block
(0, 0)

Block
(1, 0)

Multiprocessor 1 Multiprocessor 2

Block
(0, 1)

Block
(1, 1)

warp 1

warp n

--
--

- - - - -

- - - - -

Figure 1 Programming model. CUDA hierarchy of threads, blocks
and grids.

Grid

Block (0, 0)

Local
memory
(per thread)

Registers
(per thread)

Host

Block (0, 1)

Host
(PC)

Thread (0, 1)Thread (0, 0) Thread (0, 0) Thread (0, 1)

Shared memory
(per block)

Shared memory
(per block)

Registers
(per thread)

Registers
(per thread)

Registers
(per thread)

Local
memory
(per thread)

Local
memory
(per thread)

Local
memory
(per thread)

Constant
cache

Texture
cache

Multiprocessor

Global
memory

Figure 2 Memory model. CUDA memory hierarchy.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 2 of 11



are all stored at unordered different addresses. In this
case, each thread will execute a 32-byte (instead of 4-
byte) memory access sequentially, since 32 bytes is the
smallest memory access size supported by the GPU.
Other possible access sizes are 64 and 128 bytes. This
wastes 28 bytes of bandwidth per access adding to a
total bandwidth wastage of 28 × 16 = 448 bytes for all
16 threads and as accesses take place sequentially,
latency will be high.
In Figure 3(b), the values accessed are stored at neigh-

boring addresses. In this case, coalescing takes place.
The GPU issues a single 64-byte load, thus no band-
width is wasted and only a single access is needed.

Previous implementations
The first known implementations of S-W based
sequence alignment on a GPU are presented in [18] and
[19]. These approaches are similar and use the OpenGL
graphics API to search protein databases. First the data-
base and query sequences are copied to GPU texture
memory. The score matrix is then processed in a systo-
lic array fashion [20], where the data flows in anti-diago-
nals. The results of each anti-diagonal are again stored
in texture memory, which are then used as inputs for
the next pass. The implementation in [18] searched
99.8% of Swiss-Prot (almost 180,000 sequences) and
managed to obtain a maximum speed of 650 Mega Cell
Updates Per Second (MCUPS) compared to around 75
for the compared CPU version. The implementation dis-
cussed in [19] offers the ability to run in two modes, i.e.

one with and one without traceback. The version with
no traceback managed to perform at 241 MCUPS, com-
pared to 178 with traceback and 120 for the compared
CPU implementation. Both implementations were
benchmarked using a Geforce GTX 7800 graphics card.
The first known CUDA implementation, ‘SW-CUDA’,

is discussed in [21]. In this approach, each of the GPU’s
processors performs a complete alignment instead of
them being used to stream through a single alignment.
The advantage of this is that no communication
between processing elements is required, thereby redu-
cing memory reads and writes. This implementation
managed to perform at 1.9 GCUPS on a single Geforce
GTX 8800 graphics card when searching Swiss-Prot,
compared to around 0.12 GCUPS for the compared
CPU implementation. Furthermore, it is shown to scale
almost linearly with the amount of GPUs used by simply
splitting up the database.
Various improvements have been suggested to the

approach presented in [21], as shown in [13,22]. In the
‘CUDASW++’ solution presented in [13], for sequences
of more than 3,072 amino acids an ‘inter-task paralleli-
zation’ method similar to the systolic array and OpenGL
approaches is used as this, while slower, requires less
memory. This ‘CUDASW++’ solution manages a maxi-
mum speed of about 9.5 GCUPS searching Swiss-Prot
on a Geforce GTX 280 graphics card. An improved ver-
sion, ‘CUDASW++ 2.0’ has been published recently [14].
Being the fastest Smith-Waterman GPU implementation
to date, ‘CUDASW++ 2.0’ managed 17 GCUPS on a

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread

Thread

Thread

Memory address 0
Memory address 4
Memory address 8
Memory address 12

Memory address 80
Memory address 84
Memory address 88
Memory address 92

Memory address 0
Memory address 4
Memory address 8
Memory address 12
Memory address 16
Memory address 20
Memory address 24
Memory address 28

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

16 x 32 bytes = 512 bytes 1 x 64 bytes

Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Memory address 100
Memory address 104
Memory address 108
Memory address 112

…
Memory address 32
Memory address 36
Memory address 40
Memory address 44
Memory address 48
Memory address 52
Memory address 56
Memory address 60

Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

(a) non-coalesced (b) coalesced
Figure 3 The effect of coalescing on memory reads. The figure demonstrates the coalescing phenomenon.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 3 of 11



single GTX 280 GPU, outperforming CPU-based BLAST
in its benchmarks.

Methods
The methods used during the development of DOPA,
our high performance and optimized GPU implementa-
tion for protein sequence alignment, are presented as
follows:

General design
Being the most mature GPU programming toolkit to
date, NVIDIA CUDA is used for the GPU programming
(device code) in conjunction with C++ for the PC pro-
gramming (host code). Like with other existing GPU
implementations, protein sequences from the Swiss-Prot
database [23] are considered for alignment. The reason
is that protein alignment is more complex than the
DNA version, which makes supporting DNA alignments
later on relatively simple. In addition, Swiss-Prot has a
size of around 300 MB, making it small enough to fit
into the global memory of the GPU which is about 1
GB for the device used in this paper. Databases larger
than 1 GB have to be divided in chunks before being
loaded into the GPU global memory for alignment.
Figure 4 shows a block diagram description of the
DOPA GPU implementation. The host code is mostly
concerned with loading data structures, copying them to
the GPU, and copying back and presenting the results.
The query sequence, converted database and other data

are copied to the GPU. Then the device code is
launched, which aligns the query sequence with the
database sequences using the S-W algorithm.
Like other GPU implementations, our implementation

returns maximum S-W scores instead of the actual
alignments. Skipping the algorithm’s traceback step sig-
nificantly simplifies and speeds up the implementation.
Furthermore, as no data structures like pointer lists
need to be kept, memory consumption is decreased as
well. However, to be able to generate full alignments, a
number of top-scoring sequences are exported to a new
database file. The sequences in this file can then be
aligned on the host PC using the Smith-Waterman
search (ssearch) tool. This approach leads to some
redundancy as some sequences are aligned twice, how-
ever, the number of such sequences is relatively small.
By default 20 top-scoring sequences are returned,
whereas the Swiss-Prot database contains more than
500,000. However, the implementation does not limit
the number of sequences to be returned. Also, returning
more sequences will have negligible effect on
performance.
Each processing element in our implementation is used

to independently generate a complete alignment between
a query sequence and a database sequence. This elimi-
nates the need for inter-processor communication and
results in efficient resource utilization. The GPU used for
implementation (i.e. NVIDIA GTX 275) contains 240
processors, while the latest release of Swiss-Prot contains

Figure 4 Description of the DOPA GPU implementation. The figure presents a block diagram description of the DOPA GPU implementation.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 4 of 11



more than 500,000 sequences. Hence, it is possible to
keep all processors well occupied [24].

Database conversion
In FASTA format, sequences are preceded by sequence
descriptions that give names and other biological infor-
mation about them. Instead of directly loading data-
bases in FASTA format, the GPU implementation
converts them to a custom GPU format to better
match the device capabilities. A database only needs to
be converted once, after which it is locally stored in
the new format. The database loading/storing time is
around 1.6 seconds. For databases of size larger than
the global memory of the GPU, for example ‘NR’ from
NCBI, the converted database needs to be stored

locally in chunks. In this case, the loading/storing
overhead will be incurred for each stored chunk. The
conversion process, as shown in Figure 5, consists of
the following steps.
Sorting
In practice the threads in a half-warp will have to wait
for each other to finish their workload instead of conti-
nuing on independently. To reduce this waiting time,
the database sequences are sorted by length to minimize
length differences between neighboring threads, as
shown in Figure 5(b). Sequence descriptions are stored
in a separate file that is not uploaded to the GPU, sav-
ing memory and decreasing load times. Furthermore,
sequence characters are replaced with numeric indexes
to facilitate easier substitution matrix lookups.

 (c) Sequence sets of concatenated sequence groups(b) Sorted and descriptions separated(a) Original database

Description 0

Description 1

Description 2

Description 4

Description 3

Description 15

Description 0

Description 1

Description 2

Description 3

Description 4

Description 5

Description 6

Description 7

Description 8

Description 9

Description 10

Description 11

Description 12

Description 13

Description 14

Description 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sequence groups

Sequence set 0

Sequence set 1

Sequence terminator

Sequence group terminator

Figure 5 The database conversion. The figure illustrates the database conversion process.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 5 of 11



Concatenation
After sorting, groups of 16 sequences are taken and pro-
cessed in sequence sets that will have a half-warp of
threads working on them, as shown in Figure 5(c). Even
though sorting by length has somewhat equalized work-
load within each sequence set, various sequence sets still
have different sizes. To combat this, sequences within a
sequence set are concatenated with leftover sequences
to form sequence groups. The total length of each
sequence group within a sequence set nearly equals or,
ideally, matches the length of the longest sequence in
that set. This results in an equal workload for each
thread in a half-warp processing a sequence set.
Sequence terminators are inserted between the conca-

tenated sequences; these tell the GPU kernel to initiate
a new alignment. Sequence group terminators are
inserted at the end of each sequence group signifying
the end of a group of concatenated sequences, at which
point a thread will wait for the rest of the threads in the
half-warp to cease execution.
Interlacing
Once all database sequences have been processed into
16-wide sets of sequence groups, they are written to file.
The sequence sets are written in an interlaced fashion,
as shown in Figure 6. Each interlaced subset consists of
eight characters from each sequence group.
Eight characters of the set’s first sequence group are

written, then eight characters of the set’s second group
and so on. As there are 16 sequence groups in each
sequence set, each thread in a half-warp is now able to
load 8 bytes of sequence data from neighboring
addresses. As a result, 128-byte coalesced loading takes
place.
Equal length sets
During code development, alignments were conducted
with a synthetic (randomly generated) database, each
sequence of which had the same length. The perfor-
mance of this synthetic database is twice that of the
Swiss-Prot database, which has sequences ranging in

length from 2 to 35213 characters. The drop in perfor-
mance for Swiss-Prot is the result of different workloads
between different half-warps.
Though concatenation resulted in an equal workload

distribution for threads within every sequence set, it still
varies among different sequence sets. To resolve this,
the length of each sequence group within every
sequence set is made equal or nearly equal to the length
of the longest sequence in the database, as shown in
Figure 5(c). This results in an equal workload distribu-
tion for all GPU threads in general. The outcome of this
is a 1.7 times increase in performance.
Evidently, equal workload across different threads

improves performance; possibly a result of the GPU’s
thread scheduling not being optimal in the previous
case. For example, the GPU thread scheduler might only
schedule a new thread block once all the threads in a
previous thread block have completed their execution.

Temporary data reads and writes
Memory bandwidth represented a serious bottleneck
while developing the GPU implementation. A num-
ber of steps have been taken to optimize for high
performance by reducing the number of memory
accesses, the frequent temporary data accesses in
particular.
The S-W algorithm with affine gap penalties [25] is

given by Equation 1, where a, b are the gap opening and
extension penalties, respectively. In contrast to the regular
or linear gap penalties, an affine gap penalty encourages
the extension of gaps rather than the introduction of new
gaps. Further, H0,0 = D0,0 = E0,0 = Hi,0 = Di,0 = Ei,0 = H0,j =
D0,j = E0,j = 0, for 1 ≤ i ≤ M and 1 ≤ j ≤ N, where M and N
are the lengths of the sequences to be aligned.

Hi,j = max

⎧⎪⎪⎨
⎪⎪⎩

0
Hi−1,j−1 + Si,j
Di,j

Ei,j

(1)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

D
at

ab
as

e
ch

ar
ac

te
rs

8 9 10 111213 1415 8 9 10 111213 1415 8 9 10 1112131415

0 8 120

S
equence
subsets

Sequence group 0 Sequence group 1 Sequence group 15

Sequence set

Address (bytes)

Figure 6 Interlacing. The figure shows sequence storing as interlaced subsets.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 6 of 11



where Di,j = max
{
Hi−1,j − α

Di−1,j − β

and Ei,j = max
{
Hi,j−1 − α

Ei,j−1 − β

As no traceback is performed on the GPU, S-W
matrix values do not need to be saved for the entire
execution time and can be overwritten. As such, only a
single column of S-W scores is kept. This score col-
umn stores values to the left of the currently proces-
sing column, i.e. Hi -1, 1 ≤ j ≤ N in Equation 1. The size
of this temporary data column is set to the size of the
query sequence, not the database sequence, so that the
column can have one fixed size for all database
sequences. This usually requires less memory, as it is
unlikely that the query sequence will be as long as the
longest database sequence. The temporary data column
is set to zero whenever a new database sequence is
started. In addition to this temporary score column,
variables are used to keep the values of the upper and
upper-left cells required by the algorithm, i.e. Hi,j - 1

and Hi - 1,j - 1 in Equation 1. To support affine gap
penalties, another temporary data column is added for
D values. Additionally, an upper E value is kept (see
Equation 1).
Each S-W iteration involves reading and writing two

temporary values (score and D), for four accesses in
total. When both are non-coalesced, 32 byte reads/
writes are issued for each access. This means that per
half-warp

16 threads × 32 bytes × 2 values × 2 read/write = 2048 bytes

of bandwidth is used, resulting in a major memory
bottleneck. The optimization steps mentioned below
decrease this to one 128-byte coalesced read and write
for every second iteration. This is a 16 times bandwidth
improvement and requires only 1 instead of 64 accesses.
128 bytes is the largest allowed coalesced access size,
and is faster than multiple smaller coalesced accesses
[24]. The optimizations are as follows:

• Smaller, 16-bit data type for the temporary values,
cutting the theoretically required bandwidth in half
and allowing for better coalescing.
• Each thread stores one data value in turn, resulting
in an interlaced storage scheme. Instead of direct
array accesses, a pointer into the temporary storage
is started at the thread id, and increased by the total
number of threads to move to the next element of
the H matrix. Each thread in a half-warp then reads
a 2-byte coalesced value, meaning that instead of
two 32-byte accesses per thread, two such accesses
take place per half-warp. This sixteen times

bandwidth improvement results in an almost ten
times net speedup.
• To again halve the number of memory accesses,
the temporary score and D values are interlaced.
This is done by defining a data structure consisting
of these values and using it to access the score and
D values for an iteration in one go. At this point, a
thread accesses two 2-byte values in one read, for a
total of 16 × 2 × 2 bytes bandwidth per half warp.
The result is a 64-byte coalesced access.
• Finally, two temporary values are interlaced to
move to 128-byte accesses. This has an additional
benefit of temporary reads/writes only being
required for every second query sequence symbol
processed.

Substitution matrix accesses
Aligning proteins requires the use of a substitution
matrix, which is accessed every time two symbols are
aligned, making its access time critical to the implemen-
tation’s performance. Substitution matrix (e.g. BLOSUM
62) accesses are random and are completely dependent
on the database sequence, complicating the choice of
memory used. Global memory is not a good choice for
such a frequent usage due to its high access time. Also
the random nature of substitution matrix accesses
makes coalescing very difficult. As an alternative, the
substitution matrix is stored in texture memory. Texture
memory is a cached window into global memory that
offers lower latency and does not require coalescing for
best performance. It is thus well suited for random
access. Texture memory has the ability to fetch four
values at a time. This mechanism can be used to fetch
four substitution matrix values from a query profile.
A query profile is shown in Figure 7. It is a type of

substitution matrix where, instead of the protein alpha-
bet, the query sequence is used along the top row. This
means that for a given database character, the

A L R K A A R K …
A
R
N
D
V
…

Query

Protein alphabet 

Query position

Fetch 4 characters
Current db character

Figure 7 Query profile. The figure describes memory accesses to
fetch values from a query profile.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 7 of 11



substitution matrix is not random anymore: multiple
substitution scores can be loaded simultaneously when
aligning the query with a database character. Further-
more, query sequence lookups are not required any-
more; only the current position within the query is
needed to index into the profile. A query profile is
generated once for every query sequence. Each query
profile column stores values for 23 characters. The
number of columns and hence the memory require-
ment for a query profile depends on the length of the
query sequence. The GTX 275 GPU used for our
implementation has 8KB of texture cache per multi-
processor. This means that a query sequence having
more than ⌊8 × 1024/23⌋ = 356 characters will result
in increased cache misses, as described in [22]. Tests
were performed to quantify the texture cache miss
rate, which was shown to be very small. For example,
aligning an 8000 character query sequence resulted in
0.009% miss rate. Using this query profile method
resulted in a 17% performance improvement with
Swiss-Prot [24].

Results and Discussion
Following is a discussion of results which presents the
experimental setup used for development, testing and
measuring the performance of DOPA. The performance
of DOPA is evaluated and compared with other avail-
able approaches.

Experimental setup
The experimental setup used to test the implementation
and measure its performance is as follows:

• Intel Core 2 Quad Q6600 (2.4 GHz) with 4 GB of
RAM
• NVIDIA Geforce GTX 275 graphics card with 896
MB of memory and clock speeds of 633, 1134 and
1404 MHz for its core, memory and shaders
respectively
• 64 bit Microsoft Windows 7 Professional
• Video drivers version 257.21
• CUDA toolkit version 3.1
• Swiss-Prot release October 2010
• Substitution matrix BLOSUM62
• Gap penalty: -10 and gap extend penalty: -2 (these
do not influence the execution time)

The run time is measured using the C clock()
instruction, the accuracy of which is verified using the
CUDA profiling application. Table 1 displays the perfor-
mance results, where the execution time in seconds and
the performance in GCUPS are given for query
sequences of varying lengths taken from Swiss-Prot and
aligned against the same database.

Figure 8(a) shows that the execution time increases
linearly with sequence length, resulting in an almost
constant performance of around 21.4 GCUPS, shown in
Figure 8(b).

Performance comparison
The optimized version of our implementation is com-
pared with: a multi-threaded high performance ssearch
(SSE2); a less optimized version of our implementation
with no equal length sequence sets; and with CUDASW
++ 2.0 [14], the fastest GPU-based Smith-Waterman
implementation to date. The comparison is shown in
Figure 9 and described as follows.
Comparison with ssearch
Ssearch (SSE2) is an accelerated and multi-threaded ver-
sion of ssearch, where ssearch is a CPU-based Smith-
Waterman alignment tool that can be found in the
FASTA suite of applications [26]. The SSE2 optimiza-
tions, described in [27] utilize modern CPU’s vector
extensions for a performance increase. The ssearch is
run on the same system, using the same experimental
setup as DOPA. The results demonstrate that our
implementation performs 2.14 times better in terms of
GCUPS than this accelerated and multi-threaded version
of ssearch.
Comparison with a less optimized version
In the less optimized version, only some of the database
optimization steps mentioned in the Methods section
have been performed. In this version, sequences are
only sorted, concatenated and interlaced. However, no
equal length sets were used, making the length of each

Table 1 Performance results with Swiss-Prot

Query sequence Length Execution time
(seconds)

Performance
(GCUPS)

P02232 144 1.24 21.35

P05013 189 1.65 21.06

P14942 222 1.93 21.15

P07327 375 3.24 21.28

P01008 464 3.99 21.38

P03435 567 4.89 21.32

P27895 1000 8.60 21.38

P07756 1500 12.91 21.36

P04775 2005 17.27 21.35

P19096 2504 21.54 21.37

P28167 3005 25.88 21.35

P0C6B8 3564 30.67 21.37

P20930 4061 34.97 21.35

Q9UKN1 5478 47.15 21.36

The table displays performance results, where execution time in seconds and
performance in GCUPS are given for query sequences of varying lengths
taken from Swiss-Prot and aligned against the sequences in the same
database.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 8 of 11



sequence set depend on the longest sequence within
that set. When run on the same experimental setup, this
less optimized version results in a performance of
around 12.5 GCUPS. The comparison shows that our
fully optimized GPU implementation performs around
1.7 times better than the less optimized version. This

demonstrates the performance impact of the crucial
optimization of equal length sequence sets, which results
in an improved scheduling.
Comparison with BLAST
DOPA is also compared with a vectorized version of the
heuristic method (NCBI - BLAST) [28] running on a 2.4
GHz Intel Core 2 Quad processor. The results show
that DOPA performs 1.8 times better in terms of
GCUPS than vectorized BLAST on the average, as
shown in Figure 9.
Comparison with SWPS3
Smith-Waterman on a PlayStation 3 (SWPS3) is an opti-
mized and vectorized CPU implementation of the
Smith-Waterman that calculates the alignment scores
[28] and is faster than the SSE2 implementation of
FASTA ssearch. While running under the same experi-
mental setup, DOPA performs around 1.43 times better
in terms of GCUPS than the optimized vectorized
SWPS3, as shown in Figure 9.
Comparison with CUDASW++ 2.0
CUDASW++ 2.0 is the fastest GPU implementation to
date for S-W based protein sequence alignment.
CUDASW++ 2.0 runs in two stages, i.e. one for short
sequences and the other for long sequences. The first
stage for aligning short sequences works by using an
approach similar to DOPA but without using concate-
nation and equal length sequence sets. The second
stage used for aligning long sequences works by using
a systolic array based alignment approach. Long
sequences in a database inherently have the largest
length differences, which is specifically true for Swiss-

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

5

10

15

20

25

30

35

40

45

50

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

Query sequence length Query sequence length

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

P
er

fo
rm

an
ce

 in
 G

C
U

P
S

(a) (b)

Figure 8 Performance results with Swiss-Prot. The figure shows execution time and performance for query sequences of varying lengths.

500 1000 1500 2000 2500 3000 3500 4000

4

6

8

10

12

14

16

18

20

22

Query sequence length

P
er

fo
rm

an
ce

 in
 G

C
U

P
S

DOPA (optimized)
CUDASW++ 2.0
SWPS3
BLAST
DOPA (less optimized)
ssearch

Figure 9 Performance comparison. The figure shows a
comparison of the fully optimized version of our implementation
(optimized DOPA) with CUDASW++ 2.0 [14], i.e. the fastest GPU-
based Smith-Waterman implementation to date, a vectorized S-W
implementation on PlayStation3 (SWPS3), BLAST, a less optimized
version of our implementation with no equal length sequence sets
(less optimized DOPA) and an accelerated and multi-threaded
version of ssearch (SSE2).

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 9 of 11



Prot. Thus, aligning them using the systolic array
based approach reduces the workload differences. The
sequence length beyond which CUDASW++ 2.0
switches from the first to the second stage is defined
by the user.
When run on the same system using same experi-

mental setup as DOPA, CUDASW++ 2.0 achieves a
performance of around 19 GCUPS. Thus our fully
optimized implementation performs 1.13 times better
than CUDASW++ 2.0 in terms of GCUPS. Both
approaches are sensitive to the structure of the data-
base used. Like our implementation, CUDASW++ 2.0
also uses 16-bit score values, as discussed in the Meth-
ods section.
Table 2 summarizes the optimization steps undertaken

by our fully optimized and less optimized DOPA imple-
mentations in comparison with CUDASW++ 2.0. In
comparison with CUDASW++ 2.0, our less optimized
implementation performs 1.52 times slower in terms of
GCUPS, as shown in Figure 9. This is specifically due to
their two stage implementation. In the fully optimized
version, we overcome this deficiency by introducing
equal length sequence sets resulting in an equal work-
load distribution and improved performance.
Additionally, DOPA also brings in the following

improvements:

• In comparison with CUDASW++ 2.0, DOPA is
simpler, as it uses just one search kernel instead of
two, requiring no inter-processor communication.
• The optimized database organization scheme used
in DOPA allows an equal workload for each thread
block, while CUDASW++ 2.0 uses a hand-picked
point at which it switches from one kernel to the
other for its work distribution.
• DOPA is complete and usable, not just a proof of
concept, as it exports the top-scoring sequences for
full alignment with ssearch. CUDASW++ 2.0 does
not provide this facility. Our implementation also
provides a web interface that allows it to be used
conveniently and remotely.

Conclusion
This paper presented a high performance GPU-based
implementation for protein sequence alignment. The
new implementation, called DOPA, improves the perfor-
mance by reducing the number of memory accesses and
optimizing the database organization. The database is
organized in equal length sequence sets resulting in an
equal workload distribution for all the threads of each
multiprocessor on the GPU. The performance achieved
by DOPA is 21.4 GCUPs. When compared with the
fastest available GPU implementation for protein
sequence alignment to date, DOPA reports a 1.13 times
improvement in terms of GCUPS.

Availability and Requirements
Project name: DOPA
Project home page: http://kentie.net/article/thesis/

index.htm
Operating system: 64 bit Microsoft Windows 7

Professional
Programming language: C++ and CUDA
Other requirements: CUDA toolkit version 3.1 or

higher

Download Source
All the necessary files are available for download at
http://kentie.net/article/thesis/index.htm

Acknowledgements
The authors would like to appreciate CE Lab. (TU Delft) for facilitating the
work.

Authors’ contributions
LH carried out the study, participated in the algorithm optimization and
analysis of the results and drafted the manuscript; MK carried out the design
and implementation of the algorithm, performed benchmark tests and
participated in the algorithm optimization and analysis of the results; ZA
proposed and supervised the study and contributed to the revising of the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 22 May 2011 Accepted: 28 July 2011 Published: 28 July 2011

Table 2 A comparison with CUDASW++ 2.0

No. Optimizations CUDASW++ 2.0 DOPA
(less optimized)

DOPA
(optimized)

1 Database sorting + + +

2 Concatenation into sequence groups - + +

3 Interlacing + + +

4 Equal length sequence sets - - +

5 Query profile + + +

The table compares the optimization steps adapted by DOPA and CUDASW++ 2.0.

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 10 of 11

http://kentie.net/article/thesis/index.htm
http://kentie.net/article/thesis/index.htm
http://kentie.net/article/thesis/index.htm


References
1. Hasan L, Al-Ars Z, Vassiliadis S: Hardware Acceleration of Sequence

Alignment Algorithms - An Overview. Proceedings of International
Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS’07): 2-5 September 2007; Rabat, Morocco 2007, 96-101.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: A Basic Local
Alignment Search Tool. Journal of Molecular Biology 1990, 215:403-410.

3. Pearson WR, Lipman DJ: Rapid and Sensitive Protein Similarity Searches.
Science 1985, 227:1435-1441.

4. Eddy SR: Profile Hidden Morkov Models. Bioinformatics Review 1998,
14(9):755-763.

5. Smith TF, Waterman MS: Identification of Common Molecular
Subsequences. Journal of Molecular Biology 1981, 147:195-197.

6. Giegerich R: A Systematic Approach to Dynamic Programming in
Bioinformatics. Bioinformatics 2000, 16:665-677.

7. Ebedes J, Datta A: Multiple Sequence Alignment in Parallel on a
Workstation Cluster. Bioinformatics 2004, 20(7):1193-1195.

8. Hasan L, Al-Ars Z, Nawaz Z, Bertels KLM: Hardware Implementation of the
Smith-Waterman Algorithm Using Recursive Variable Expansion.
Proceedings of 3rd Inernational Design and Test Workshop IDT08: December
2008; Monastir, Tunisia 2008.

9. Buyukkur AB, Najjar W: Compiler Generated Systolic Arrays for Wavefront
Algorithm Acceleration on FPGAs. International Conference on Field
Programmable Logic and Applications (FPL08): September 2008; Heidelberg,
Germany 2008.

10. Hasan L, Al-Ars Z: An Efficient and High Performance Linear Recursive
Variable Expansion Implementation of the Smith-Waterman Algorithm.
31st Annual International Conference of the IEEE EMBS: September 2009;
Minneapolis, Minnesota, USA 2009, 3845-3848.

11. Hasan L, Al-Ars Z, Taouil M: High Performance and Resource Efficient
Biological Sequence Alignment. 32nd Annual International Conference of
the IEEE EMBS: August 31-September 4, 2010, Buenos Aires, Argentina 2010,
1767-1770.

12. Lu J, Perrone M, Albayraktaroglu K, Franklin M: HMMer-Cell: High
Performance Protein Profile Searching on the Cell/B.E. Processor. IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS-2008): 20-22 April 2008; Austin, Texas, USA 2008, 223-232.

13. Liu Y, Maskell D, Schmidt B: CUDASW++: Optimizing Smith-Waterman
Sequence Database Searches for CUDA-enabled Graphics Processing
Units. BMC Research Notes 2009, 2(1):73.

14. Liu Y, Schmidt B, Maskell D: CUDASW++2.0: Enhanced Smith-Waterman
Protein Database Search on CUDA-enabled GPUs based on SIMT and
Virtualized SIMD Abstractions. BMC Research Notes 2010, 3(1):93.

15. Fermi™"NVIDIA’s Next Generation CUDA™Compute Architecture. White
paper NVIDIA Corporation 2009.

16. [http://www.khronos.org/opencl].
17. [http://www.nvidia.com].
18. Liu W, Schmidt B, Voss G, Schroder A, Muller-Wittig W: Bio-Sequence

Database Scanning on a GPU. HICOMB 2006 2006.
19. Liu Y, Huang W, Johnson J, Vaidya S: GPU Accelerated Smith-Waterman.

International Conference on Computational Science, ICCS 2006: 28-31 May
2006; University of Reading, UK 2006.

20. Hasan L, Khawaja YM, Bais A: A Systolic Array Architecture for The Smith-
Waterman Algorithm with High Performance Cell Design. ADIS European
Conference on Data Mining: July 2008, Amsterdam, The Netherlands 2008.

21. Manavski SA, Valle G: CUDA Compatible GPU Cards as Efficient Hardware
Accelerators for Smith-Waterman Sequence Alignment. BMC
Bioinformatics 2008, , Suppl 2: S10.

22. Akoglu A, Striemer GM: Scalable and Highly Parallel Implementation of
Smith-Waterman on Graphics Processing Unit using CUDA. Cluster
Computing 2009, 12(3):341-352.

23. Universal Protein Resource, April 2010. [http://www.uniprot.org].
24. Kentie M: Biological Sequence Alignment Using Graphics Processing

Units. M.Sc. thesis, Computer Engineering Laboratory, Technical University
Delft, The Netherlands 2010.

25. Gotoh O: An improved algorithm for matching biological sequences.
Journal of Molecular Biology 1982, 162:705-708.

26. UVa Fasta Server, February 2011. [http://fasta.bioch.virginia.edu].
27. Farrar M: Striped Smith-Waterman Speeds Database Searches Six Times

over other SIMD Implementations. Bioinformatics 2007, 23(2):156-161.

28. Szalkowski A, Ledergerber C, Krahenbuhl P, Dessimoz C: SWPS3 - Fast
Multi-threaded Vectorized Smith-Waterman for IBM Cell/b.e. and x86/
SSE2. BMC Research Notes 2008, 1(107).

doi:10.1186/1756-0500-4-261
Cite this article as: Hasan et al.: DOPA: GPU-based protein alignment
using database and memory access optimizations. BMC Research Notes
2011 4:261.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Hasan et al. BMC Research Notes 2011, 4:261
http://www.biomedcentral.com/1756-0500/4/261

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/21832800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21832800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2983426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14764554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14764554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.khronos.org/opencl
http://www.nvidia.com
http://www.uniprot.org
http://www.ncbi.nlm.nih.gov/pubmed/7166760?dopt=Abstract
http://fasta.bioch.virginia.edu
http://www.ncbi.nlm.nih.gov/pubmed/17110365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110365?dopt=Abstract

	Abstract
	Background
	Findings
	Conclusions

	Background
	GPU as a computational platform
	Coalescing

	Previous implementations

	Methods
	General design
	Database conversion
	Sorting
	Concatenation
	Interlacing
	Equal length sets

	Temporary data reads and writes
	Substitution matrix accesses

	Results and Discussion
	Experimental setup
	Performance comparison
	Comparison with ssearch
	Comparison with a less optimized version
	Comparison with BLAST
	Comparison with SWPS3
	Comparison with CUDASW++ 2.0


	Conclusion
	Availability and Requirements
	Download Source
	Acknowledgements
	Authors' contributions
	Competing interests
	References

