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Abstract

Background: The spread of insecticide resistance in the malaria mosquito, Anopheles gambiae is a serious threat
for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S6
transmembrane segment of domain II in the voltage gated sodium channel, known as kdr (knockdown resistance)
mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance
to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the kdr alleles in
wild Anopheles gambiae populations in Cameroon.

Results: A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and
identified as An. gambiae (N = 1,248; 88.8%), An. arabiensis (N = 120; 8.5%) and An. melas (N = 37; 2.6%). Both kdr
alleles 1014F and 1014S were identified in the M and S molecular forms of An. gambiae s.s. The frequency of the
1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from
3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both
resistant kdr alleles.

Conclusion: This study provides an updated distribution map of the kdr alleles in wild An. gambiae populations in
Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the
country may be critical for the planning and implementation of malaria vector control interventions based on IRS
and ITNs, as currently ongoing in Cameroon.

Background
Insecticide resistance is a major concern in all insect
groups that are involved in crop destruction or in dis-
ease transmission. Four different types of mechanisms
including behavioural avoidance, reduction of cuticle
penetration, metabolic detoxification and reduced tar-
get-site sensitivity lead to insecticide resistance in many
arthropod groups [1]. So far, metabolic detoxification
and target site insensitivity have been demonstrated to
play major roles in conferring resistance to insecticides
in some arthropods [2]. While metabolic resistance is
due to changes in the arthropod enzyme activity result-
ing in the detoxification or sequestration of the

insecticide, target site insensitivity is due to mutations
preventing the binding of the insecticide to its target [3].
The target site of DDT and pyrethroid insecticides is the

voltage-gated sodium channel. Different point mutations
identified in the S6 transmembrane segment of domain II
of this para-type sodium channel gene cause a change in
affinity between insecticide and its binding site. This
induces a phenotype termed knockdown resistance (kdr)
in a wide range of insects [4-6]. Different amino-acid sub-
stitutions occurring at variable positions on the voltage-
gated sodium channel have been reported in several stu-
dies. In most cases, the substitution of a Leucine residue
to a Phenylalanine was commonly noted. At position 1014
the substitution of a Leucine residue to a Phenylalanine
(L1014F) is observed in a range of arthropod species,
including Musca domestica [7], Myzus persicae [8], Plu-
tella xylostella [9], and the mosquito Anopheles gambiae
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[5], the major vector of human malaria in Africa. Another
widespread mutation changes the Leucine at position 1014
to a Serine (L1014S) in wild populations of An. gambiae
[6]. In An. gambiae, the L1014F mutation is widely distrib-
uted in West and Central Africa, whereas the L1014S
mutation has a much more restricted geographic range in
Eastern Africa [10]. The spread of these mutations in wild
populations of An. gambiae threatens the effectiveness of
malaria vector control strategies based on the use of che-
mical insecticides, and prompts for surveillance and moni-
toring [11].
Today, pyrethroid insecticides are most recommended

for use in public health because of their high effective-
ness and strong excito-repellent effect on insects, as well
as low mammalian toxicity [12,13]. These insecticides
make up around 40% of chemical insecticides used glob-
ally each year for indoor residual spraying of houses
against malaria mosquitoes, and 100% of the WHO-
recommended insecticides for the treatment of mos-
quito nets are pyrethroids [14]. Vector control is a key
strategy in reducing malaria transmission and prevalence
in endemic countries [15,16]. This strategy is chiefly
based on the use of chemical insecticides for indoor
residual spraying (IRS) and impregnation of bed nets for
killing adult mosquitoes [17-19]. Pyrethroid-impregnated
nets are therefore being massively scaled-up in Africa,
but there is serious concern about the likely evolution
of widespread pyrethroid resistance among Anopheles
gambiae mosquito populations.
In Cameroon, insecticide treated nets (ITNs) are used

for malaria vector control since the year 2000, although
implementation varies depending on local capacity [20].
The level and spread of resistance to DDT and pyre-
throids (deltamethrin, permethrin, lamda-cyalothrin) has
been reported in several malaria vector populations
mainly in An. gambiae s.s and An. arabiensis [21-23].
Moreover, it was demonstrated that enzyme systems
such as esterases, gluthatione S-transferases and cyto-
chrome P450 monooxygenases are implicated in the
resistance of these mosquito populations [24-26], and
both kdr mutations were reported [27]. However, little
is known about the geographic distribution and fre-
quency of both kdr mutations throughout the country.
The current report provides a detailed update of the

occurrence, frequency and geographic distribution of
both L1014F and L1014S kdr mutations within and
among An. gambiae populations from throughout
Cameroon.

Methods
Study sites
Mosquitoes were sampled in 21 locations (Table 1)
spanning the whole of Cameroon, and spread across its
four main geographic areas:

i) the forest area located in the southern part of the
country which extends from latitude 2° to 6° North
and experiences typical Equatorial Guinean climate
with average yearly rainfall between 1,500-2,000 mm
spread out over 4 seasons: 2 dry seasons (December-
February and July-August) and 2 rainy seasons
(March-June and September-November). Mean annual
temperature is 25°C [28]. Five localities were sampled
in this area (Table 1).
ii) the coastal area situated alongside the Atlantic

ocean, exposed to equatorial climate characterized by a
long rainy season (March-November) with high annual
rainfall between 2,000-10,000 mm and average annual
temperature at 26°C [29]. A total of ten localities were
visited in this area (Table 1).
iii) the western highlands located in the South-Wes-

tern region of Cameroon. The area is characterized by
one dry season between November and February and
one rainy season between March and October with a
mean annual rainfall of 1,800-2,500 mm and average
yearly temperature below 22°C [28]. In this part of the
country, mosquito collections were carried out in three
localities (Table 1).
iv) the northern savannas exposed to tropical climate,

subdivided into the humid tropical and Sahelian climate
domains [28,29]. The humid tropical domain extends
from about latitude 6° to 10° North and is characterized
by 2 seasons: one dry season from November to May
and one rainy season from June to October with an
average yearly rainfall between 700 and 1,000 mm, and
mean annual temperature around 26°C. The Sahelian
climate domain encompasses the northernmost areas of
the country, North of the Benue basin. The region
receives annual rainfalls below 900 mm, and experiences
a long dry season of more than 7 months (October-
May) with annual temperature around 28°C [28]. Mos-
quitoes were collected in three localities (Table 1).

Mosquito collections and species identification
Mosquitoes were collected between May 2005 and May
2007 according 3 sampling methods [30]:
i) the dipping method (LC in Table 1), used to collect

anophelines larvae and pupae from breeding sites using
tanks, ladles, sieves and pipettes. In each study site, col-
lections were performed in 10-15 breeding sites with
10-20 larvae collected per breeding site and reared
locally until adult emergence;
ii) the indoor resting collection method, used to col-

lect adult mosquitoes with mouth operated aspirators in
human dwellings (CA in Table 1);
iii) the light trap method, used for the collection of

anthropophagic adult mosquitoes with miniature light
traps operated in dwellings during the night (LT in
Table 1).

Nwane et al. BMC Research Notes 2011, 4:463
http://www.biomedcentral.com/1756-0500/4/463

Page 2 of 9



Adult mosquitoes were morphologically identified in
the field using reference keys [31,32]. They were stored
individually in labelled tubes with a desiccant and kept
in storage boxes at -20°C in the laboratory for further
analyses.

Molecular identification and kdr genotyping
DNA was extracted from each mosquito specimen using
the method of Collins and colleagues [33] and individual
mosquitoes were identified down to their species and

molecular form using PCR-RFLP [34]. This method
allows simultaneous identification of the M and S mole-
cular forms within An. gambiae s.s, as well as the other
species of the An. gambiae complex. Kdr alleles were
genotyped using hot oligonucleotide ligation assay
(HOLA) as described by Lynd and colleagues [35].

Statistical analysis
Proportions of molecular forms and kdr allele frequen-
cies with their respective confidence intervals were

Table 1 Molecular identification of members of the Anopheles gambiae complex collected in Cameroon

Geogra-
phic area

Locality Geographic
coordinates

Sampling
period

Sampling
method

Climatic and ecological
domains

An. arabiensis An. gambiae s.s An.
melas

M-form S-form

Forest Ngousso 03°53’44"N-11°
3318"E

May 2006 LC Equatorial forest, urban - 57 6 -

Nkolondom 03°56’52"N-11°
3018"E

Dec 2005 LC Equatorial forest, market
gardening area

- - 64 -

Dabadi 05°36’10"N-13°
37’50"E

May 2006 LC Equatorial/Tropical, urban - - 72 -

Italie 05°36’07"N-13°
44’22"E

May2006 LC Equatorial/Tropical, urban - - 75 -

Nkolbikon 05°36’06"N-13°
40’30"E

May 2006 LC Equatorial/Tropical, urban - 22 55 -

Coastal Ipono 02°22’29"N-09°
52’28"E

Dec. 2005 LT+CA Equatorial, humid forest, rural - 22 14 37

Campo 02°22’30"N-09°
49’33"E

Dec. 2005 LC+CA Coastal equatorial, humid
forest, rural

- 37 39 -

Kribi 02°56’33"N-09°
54’26"E

Dec. 2005 LC Coastal equatorial, humid
forest, urban

- 62 11 -

Bonamikengué 03°48’18"N-10°
08’08"E

Oct. 2005 LC Coastal forest, urban - 64 4 -

Bonanloka 04°01’43"N-09°
43’54"E

May 2005 LC Coastal, equatorial, urban - 38 24 -

Bonanjo 04°02’22"N-09°
41’13"E

Oct. 2005 LC Coastal equatorial, urban - 61 2 -

Bonassama 04°04’26"N-09°
41’06"E

Oct. 2005 LC Coastal equatorial, urban - 74 - -

Loum 04°42’13"N-09°
44’03"E

Oct. 2005 LC Equatorial forest, suburban - 77 - -

Tiko 04°05’22"N-09°
21’09"E

Nov. 2005 LC Equatorial forest, urban, - 47 18 -

Idenau 04°13’23"N-08°
58’13"E

Nov. 2005 LC Coastal equatorial, suburban - 18 - -

Highland Mangoum 05°28’35"N-10°
35’18"E

Oct. 2005 LC Tropical, grassland mountains,
market gardening area

- - 76 -

Makoutchietoum 05°36’37"N-10°
36’24"E

Oct. 2005 LC Tropical, grassland mountains,
market gardening area

- - 77 -

Magba 05°58’10"N-11°
13’38"E

Oct. 2005 LC Tropical, transition forest/
savanna, rural

1 - 62 -

Northern
savanna

Tibati 06°28’12"N-12°
37’20"E

May 2007 LC+LT Tropical, humid savanna,
suburban

14 - 50 -

Ngaoundéré 07°19’04"N-13°
35’38"E

Oct. 2006 LC Tropical, humid savanna, urban 45 - 16 -

Pitoa 09°23’31"N-13°
30’09"E

Oct. 2006 LC Tropical, dry savanna,
suburban, cotton area

60 - 4 -

LC: larval collection, LT: Light trap; CA: capture with aspirators
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determined using bootstrap statistical inference. The
method is based on building a sampling distribution by
re-sampling from field collected data. Data processing
was performed using Excel and R softwares (R Develop-
ment Core Team, 2005). The distribution of genotypes
at the kdr locus was tested for conformity to Hardy-
Weinberg equilibrium within each molecular form and
collection site, using exact tests available in GENEPOP
3.3 software [36].

Results
A total of 1,405 anopheline mosquitoes from the An.
gambiae complex were collected in 21 sampling sites
with at least 60 specimens per site, except in Idenau
(coastal area) where only 18 individuals were collected
(Table 1).

Species and molecular form distribution
Three anopheline species were identified among the
specimens collected in the 21 prospected sites: An.
melas, An. arabiensis and An. gambiae s.s.. Anopheles
melas was collected at the adult stage in Ipono where it
represented 50% of the total number of mosquitoes col-
lected in this locality situated in the mangrove area of
coastal Cameroon. Anopheles arabiensis was collected in
the western highlands and in the northern savannas
areas, at increasing frequencies when moving north-
wards (Table 1). Anopheles gambiae s.s was sampled in
all sites: it was the only species of the complex surveyed
in the southernmost sites, and decreased in frequency
when moving northwards (Table 1). Both M- and S-
form mosquitoes were found among the samples and
occurred together in 9/21 localities (Table 1). The M-
form was widespread and predominant in the coastal
area characterized by abundant rainfalls and maximum
relative humidity, as well as in large urban centres in
the forest area. No An. gambiae M-form was found in
the highlands area, as well as in the northern savannas.
The S molecular form was found in 18/21 sites, being
predominant in the rural areas and suburban zones
(Table 1). In the highlands and northern savannas areas,
An. gambiae s.s. samples were essentially made up with
the S molecular form. Proportions of this molecular
form were < 40% in the coastal area, except in Campo
where the proportions of the 2 forms were nearly equal.
No M/S hybrid was found in our samples even in sites
where M and S were sympatric.

Distribution of the kdr alleles
All three kdr alleles (1014L, 1014F and 1014S) were
detected in both molecular forms of An. gambiae s.s.
(Table 2), although at markedly different frequencies
and with strong geographical variation within form. In
the M molecular form, the 1014F allele was detected in

7/12 samples, at a frequency always below 20% (Table 2
Figure 1A). The highest frequencies were observed in
the coastal area, especially in Bonanjo and Bonassama
which are two central districts of Douala, the biggest
harbour of Cameroon. In Nkolbikon, in the easternmost
part of the forest area of South Cameroon where the
1014F allele occurs at c.a. 7% in the M-form population,
the 1014S allele was observed in one M-form specimen,
at the heterozygous state.
Elsewhere (e.g in 5/12 localities), all M-form speci-

mens carried the susceptible 1014L allele at the homo-
zygous state. Hardy-Weinberg proportions were
generally respected, except in two cases in M-form
populations from the coastal area (Table 2). These sig-
nificant departures were associated with a deficit in het-
erozygotes. In the S molecular form, the 1014F allele
was observed in all sites, except in 2 locations where
sample sizes were very low (N = 4, Table 2). The fre-
quency of this allele ranged from ≈3% in Tiko (coastal
area) to 88% in Makoutchietoum (highland area). Glob-
ally, the highest frequencies of this allele were recorded
in the highlands and forest areas, and were lowest in the
northern savannas (Table 2 Figure 1B). The 1014S allele
was detected in 12 out of 18 S-form samples, at a fre-
quency ranging from 3 to 15%. The allele was spread
throughout all ecological zones of Cameroon, reaching
its highest frequencies in S-form populations from the
forest and highlands areas. Significant (p<0.05, single
test level) departures from Hardy-Weinberg proportions
were observed in 3 out of 10 populations tested (Nko-
londom, Campo and Tibati, Table 2). These departures
were associated with deficits in heterozygotes. All An.
arabiensis (N = 120) and An. melas (N = 37) specimens
tested were homozygous for the susceptible 1014L allele
at the kdr locus.

Discussion
The distribution of species within the An. gambiae com-
plex observed in this study is in agreement with the
known biology of these taxa [32,37]. As for the M and S
molecular forms of An. gambiae s.s, their distribution
and ecological requirements agree with previous studies
carried out in Cameroon [38-40]. The presence of An.
arabiensis was almost exclusive in the northern savanna
area characterized by a drier climate and mean annual
rainfall below 1,000 mm, in agreement with the ecologi-
cal features described in previous studies. Anopheles
melas was identified in Ipono, a rural locality situated in
the mouth of the Ntem river in the coastal area. The
locality is surrounded by mangrove swamps, which are
typical breeding sites for this species. Anopheles melas
represented c.a. 50% of the total mosquitoes collected at
the adult stage in this locality, confirming its anthropo-
philic and endophilic behavior [38,41,42].
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An. gambiae s.s. was the most frequent species of the
complex collected during this study. This species exhi-
bits two distinctive molecular forms termed M and S
characterized by fixed nucleotide difference in the inter-
genic spacer of the ribosomal DNA [43,44]. Genetic dif-
ferentiation between these molecular forms is high only
in two or three tiny genomic areas named the specia-
tion islands (representating 1% of the total genome),
with low or no differentiation found across most of the
genome [45-47]. It is likely that the M and S molecular
forms are distinct species [48,49], and there are distinct
differences in the assortment of insecticide resistance
genotypes and phenotypes between them. In this study,
the two molecular forms of this species were identified
in the samples, occurring at various relative frequencies
from one site to another. The absence of MS hybrids

reinforces previous findings for strong genetic isolation
of the M and S forms in Cameroon [39,50,51]. Globally,
the M molecular form was widespread in the highly
urbanized coastal area and in around major urban cen-
tres in the forest area. Its distribution was restricted to
the southernmost localities, and it was not found above
latitude 5°N. The S form was more widespread and was
found in all geographical areas sampled, albeit at a
lower frequency than the M form in urbanized areas in
the South. It was highly predominant in the central part
of the country including western highlands and
occurred together with An. arabiensis in northern
savannas. This distribution pattern is consistent with
previous reports [22,38,39,52]. Physical environmental
factors such as temperature, water vapour pressure, eva-
potranspiration, sunlight exposure, annual rainfall and

Table 2 Frequency of kdr alleles in Anopheles gambiae s

An. gambiae s.s Geographic area Locality N Allelic frequencies (%) FIS p(HW)

f (1014L)[95%CI] f (1014F)[95%CI] f (1014S)[95%CI]

M-form Forest area Ngousso 57 98.2 [95.5-100] 1.7 [0-4.5] 0 - 0.009 0.991

Nkolbikon 22 90.9 [79.2-100] 6.8 [0-18.2] 2.3 [0-7.5] - -

Coastal area Ipono 22 100 0 0 - -

Campo 37 100 0 0 - -

Kribi 62 95.2 [91.2-98.4] 4.8 [1.5-8.8] 0 - 0.043 0.877

Bonamikengué 64 100 0 0 - -

Bonanloka 38 100 0 0 - -

Bonanjo 61 81.9 [73.8-89.5] 18.0 [10.5-26.2] 0 + 0.342 0.027

Bonassama 74 87.2 [80.4-93.2] 12.8 [6.8-19.6] 0 +0.462 0.011

Loum 77 100 0 0 - -

Tiko 47 94.7 [90-98.9] 5.3 [1.1-10] 0 - 0.045 0.911

Idénau 18 91.7 [83.3-100] 8.3 [0-16.7] 0 - -

S-form Forest area Ngousso 6 16.7 [0-50] 75.0 [35.7-100] 8.3 [0-25] - -

Nkolondom 64 35.9 [25.8-46.1] 60.2 [50-70.3] 3.9 [0.8-8.6] +0.452 0.005

Dabadi 72 39.6 [31.9-47.9] 46.5 [38.2-54.2] 13.9 [8.3-19.4] - 0.001 0.583

Italie 75 25.3 [19.3-32.0] 62.7 [55.33-70] 12.0 [7.3-17.3] - 0.103 0.172

Nkolbikon 55 32.7 [24.1-41.2] 60.9 [51.7-70.2] 6.4 [2.5-11.2] + 0.019 0.538

Coastal area Ipono 14 71.4 [54.2-87.5] 25.0 [11.5-38.2] 3.6 [0-11.5] - -

Campo 39 60.2 [47.1-73.3] 29.5 [17.9-41.9] 10.3 [3.6-18.2] + 0.346 0.005

Kribi 11 36.4 [13.6-60] 54.5 [33.3-75] 9.1 [0-22.2] - -

Bonamikengué 4 100 0 0 - -

Bonanloka 24 89.6 [78.6-98.1] 10.4 [1.9-21.4] 0 - -

Bonanjo 2 25.0 [0-50] 75.0 [0-100] 0 - -

Tiko 18 97.2 [90.6-100] 2.8 [0-9.4] 0 - -

Highland area Mangoum 76 0.6 [0-1.9] 84.9 [79.6-90.1] 14.5 [9.2-19.7] +0.001 0.577

Makoutchietoum 77 0.6 [0-1.9] 88.3 [83.8-92.9] 11.0 [6.5-15.6] -0.1350 0.250

Magba 62 57.3 [47.6-66.9] 37.9 [29.8-46.8] 4.8 [1.6-8.9] +0.088 0.161

Northern savannah area Tibati 50 91.0 [83-97] 9.0 [3-17] 0 +0.631 0.005

Ngaoundéré 16 78.1 [56.2-93.7] 18.7 [3.1-37.5] 3.1 [0-9.4] - -

Pitoa 4 100 0 0 - -

f(): frequency of the allele (in %); [95%CI]: 95% confidence interval; N: number of mosquitoes; p(HW): probability of the exact test for goodness of fit to Hardy-
Weinberg equilibrium; in bold: Significant value (p(HW)<0.05, single test level); Fis is calculated according to Weir and Cockerham, 1984. Positive Fis indicates a
deficit of heterozygotes and negative Fis indicates an excess of heterozygotes; -: not determined because no polymorphism observed and/or N < 30.
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land cover have been shown to influence the distribu-
tion of the M and S forms of An. gambiae at the geo-
graphical scale of the country in Cameroon [39]. Other
biotic and abiotic factors need to be involved to explain
the heterogeneous distribution observed at a more local
geographical scale. In this regard, it is important to
stress that these vector populations typically show tem-
poral variations in their relative abundance [23]. This
might lead to mosaic patterns of species occurrences
along a geographical transect, such as observed in the
present study in areas where the habitat is globally
equally favourable to both species/molecular forms.
Moreover, biotic interactions occurring at the larval
and/or adult stages such as competition, predation and
parasitism might further determine the population’s
structure and impact on species balance locally, as
recently evidenced from studies conducted on An. gam-
biae populations of the M and S form in Burkina Faso
[53,54]. Finally, anthropogenic factors, such as chemical
insecticide usage in public health and agriculture may
be a key factor in selecting one or the other of the
molecular form, according to the resistance mechanism
(s) it is armed with.

The coexistence of both 1014F and 1014S kdr alleles
was evidenced in the M molecular form as well as in
the S form in this study, although both alleles occurred
at a much higher frequency in S-form than in M-form
populations. Some authors have suggested that there is
a link between the 1014F and 1014S kdr alleles and
resistance phenotypes to DDT and pyrethroid insecti-
cides in field populations of Anopheles gambiae s.s
[5,55,56]. However, questions over the reliability of
inferring resistance phenotype based solely on the diag-
nosis of kdr genotype have been raised, because correla-
tions between phenotype and kdr genotype are obscure
in some instances [57]. Other authors argue that the kdr
alleles cannot alone confer resistance to DDT and pyre-
throid insecticides in the absence of hypothetical, thus
far unidentified co-factors [57,58]. Alone or in combina-
tion with the high activity level of detoxification enzyme
systems (monooxygenases, glutathione-S-transferases
and non-specific esterases) reported in some mosquito
populations of our study area [24-26], the 1014F and
1014S kdr alleles identified in most of our collection
sites could have an impact on the high levels of An.
gambiae s.l resistance to these insecticides reported

BA

Figure 1 Distribution of 1014L, 1014F and 1014S kdr alleles in Anopheles gambiae M form (A) and S form (B) populations.
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throughout Cameroon [59]. On the whole results pre-
sented in this study shows a rise in frequency of resis-
tant kdr alleles (e.g., 1014F and 1014S) in both
molecular forms compared to previous studies related to
the frequency of these alleles in the country [22,23,27].
However, these frequencies, particularly that of the
1014F recorded in the M molecular form are lower
compared to that obtained in a recent survey carried
out in Cameroon where the frequency of this allele was
68% in Douala and 44% in Yaounde [60]. These alleles
were not detected in An. arabiensis nor An. melas speci-
mens. None of them has not yet been identified in An.
melas whereas several studies reported their presence in
An. arabiensis in Kenya [61], Sudan [62,63] and Camer-
oon [22]. The absence of these alleles in the present
samples suggests their recent introduction in An. ara-
biensis in Cameroon where they seem to occur at a very
low frequency. Within An. gambiae s.s, both 1014F and
1014S alleles were previously reported in Cameroon
[27,64]. In neighbouring countries, at least one of these
alleles has been found, e.g. in Equatorial Guinea [65],
Gabon [66], Central Africa Republic [67], Chad [68] and
Nigeria [69] emphasizing the spread of the kdr muta-
tions in Central Africa [10]. However, again, referring to
results based on cross sectional studies calls for caution
and care must be taken in predicting absence of these
alleles in a given zone/area of the country.
The uneven distribution of kdr alleles between molecu-

lar forms and species of the An. gambiae complex prob-
ably reflects different molecular evolution dynamics
within species and forms and different levels of exposure
to insecticide-driven selection pressure [10,70-72]. A sig-
nificant heterozygote deficit was noted in some M and S
form populations when kdr genotypic frequencies were
compared to Hardy-Weinberg proportions. This hetero-
zygote deficit was observed in sites where chemical insec-
ticides particularly pyrethroids have been reported to be
commonly used for agriculture, wood/forest exploitation
and public health purposes [23,72]. Although the resis-
tance genotype was not determined in this study, we
think the selection pressure from agricultural use of both
DDT and pyrethroids, as well as to DDT-based vector
control campaigns undertaken in the 1950s may confer a
selective advantage to resistant homozygote individuals
because kdr is a recessive trait [5].
The selection of the kdr alleles has been evidenced

with the use of ITNs [73,74]. ITNs or LLINs are dis-
tributed on a large scale in Cameroon since ≈10 years
by the National Program of Malaria Control. This may
constitute an additional source for the selection pres-
sure of kdr alleles in several Anopheles gambiae mos-
quito vector populations in Cameroon. Here, the
highest frequencies of kdr alleles were recorded in
urban areas (e.g., Ngousso, Dabadi, Nkolbikon and

Italie) and agricultural settings (e.g., Nkolondom,
Campo and Makoutchietoum) where large amounts of
chemical insecticides are commonly used for diseases
vector control, personal protection against nuisances
and crop/wood protection [23]. The 1014F and 1014S
kdr alleles were initially identified in Anopheles gam-
biae mosquitoes from West [5] and East [6]. Africa
respectively. Their co-occurrence and rise in frequency
in mosquito vector populations in Cameroon testifies
of the ongoing geographical spread of both alleles
invading wild Anopheles gambiae populations through-
out Africa.

Conclusions
In West Africa, ITNs were reported to provide personal
protection even against kdr-based resistant An. gambiae
populations [75-77], but recent studies suggested
reduced efficacy of ITNs and IRS in areas with high fre-
quencies of 1014F kdr allele [78]. High frequencies of
kdr alleles in malaria mosquito populations in Camer-
oon prompts the need for close monitoring of vector
susceptibility levels to insecticides and tracing of resis-
tance mechanisms in order to devise adapted vector
control measures and prevent failure in areas where
these methods are implemented.
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