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Abstract

Background: The prevalence and severity of the 2009 HIN1 pandemic appeared to vary significantly across
populations and geographic regions. We sought to investigate the variability in transmissibility of HIN1 pandemic
in different health regions (including urban centres and remote, isolated communities) in the province of
Manitoba, Canada.

Methods: The Richards model was used to fit to the daily number of laboratory-confirmed cases and estimate
transmissibility (referred to as the basic reproduction number, Ry), doubling times, and turning points of outbreaks
in both spring and fall waves of the HIN1 pandemic in several health regions.

Results: We observed considerable variation in Ry estimates ranging from 1.55 to 2.24, with confidence intervals
ranging from 145 to 2.88, for an average generation time of 2.9 days, and shorter doubling times in some remote
and isolated communities compared to urban centres, suggesting a more rapid spread of disease in these
communities during the first wave. For the second wave, R,, the effective reproduction number, is estimated to be
lower for remote and isolated communities; however, outbreaks appear to have been driven by somewhat higher

transmissibility in urban centres.

remote and isolated communities.

Conclusions: There was considerable geographic variation in transmissibility of the 2009 pandemic outbreaks.
While highlighting the importance of estimating Ry for informing health responses, the findings indicate that
projecting the transmissibility for large-scale epidemics may not faithfully characterize the early spread of disease in

Background

Although the overall Canadian experience of the 2009
HIN1 pandemic influenza was perceived to be relatively
mild for most individuals, the disease disproportionately
affected several vulnerable and underserved communities,
including First Nation reserves in northern Manitoba,
remote and isolated communities in Nunavut, and Abori-
ginal communities on Vancouver Island [1-3]. The varia-
bility in disease outcomes is often described by factors
pertinent to the population demographics, environmental
characteristics, underlying health conditions, and health-
care access [3-6]. A direct effect of these factors appears
on the transmissibility of disease in different population
settings, which may contribute to larger outbreaks in
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vulnerable communities as a result of differential preva-
lence [7].

Transmissibility can be described as the basic reproduc-
tion number (R,), which in the epidemiological context, is
defined as the average number of new cases generated by
an infectious individual in a fully susceptible population
[8]. This quantity, once estimated for a new disease, can
be used to identify target strategies for mitigating disease
outcomes. Following the emergence of the HIN1 pan-
demic strain, attempts were made to estimate R, largely
for urban population settings [9-12]. These estimates sug-
gest that the novel HIN1 strain was less transmissible
(range: 1.2-1.7) than the 1918-1919 pandemic virus (range:
1.8-3.0) [12]. However, HIN1 virus transmission appeared
to vary significantly in remote and isolated communities,
and among vulnerable population groups [1,3], and there-
fore prior estimates of Ry for the urban population settings
may not be applicable to devising targeted measures for
future planning in these communities.
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Given the experience of the 2009 pandemic in the pro-
vince of Manitoba, Canada, with severe outbreaks in dif-
ferent health regions during both spring and fall waves,
we sought to investigate the variability in transmissibility
of the disease using the data for laboratory confirmed
cases of HIN1 infection. The Richards model [13] was
applied and fit to cumulative incidence of confirmed
cases to estimate the transmissibility and turning points
of the outbreaks in different population settings, and
compared the results for the first and second waves. This
modelling approach allows us to predict changes in the
course of a single outbreak, determine the cumulative
incidence at the turning point of the epidemic, and pro-
ject the final number of identified cases (the cumulative
incidence of infection) at the end of epidemic. In practi-
cal terms, determining the turning point of an outbreak
will provide important public health information for
timely implementation of effective intervention strategies.
The results are compared with those of previous studies
on transmissibility of pandemic HIN1 influenza. Finally,
the findings are placed in the context of public health
practice for future planning regarding the prevention and
control of emerging infectious diseases, and the impact
of constraints imposed by data and the model on the
results presented in this study are discussed.

Materials and methods

To estimate plausible ranges for Ry, the Richards model
[13] was employed to fit to data collected for labora-
tory-confirmed cases of HIN1 infection in a single out-
break. This type of modelling, which describes the
dynamics of cumulative incidence of infection, has been
widely used in the study of plant disease epidemics
[14,15], and more recently for the epidemics in human
populations [16-19].

The model

When I(t) is used to represent the cumulative number
of confirmed cases of pandemic HINT1 infection on day
t during the outbreak, the Richards model (the rate of
change in I with time) can be expressed as

I =rI|:1 - (;{)a] (1)

where r represents the intrinsic growth rate of I in the
absence of any limitation to disease spread; K is the
final size (maximum cumulative cases) of [; and a mea-
sures the extent of deviation from the S-shaped
dynamics of the classical logistic growth model [20].
This model describes the epidemic dynamics in two
phases of fast and slow infection spread with a transition
point (turning point), at which the maximum rate of
disease incidence occurs. In the slow phase of infection
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spread (after the turning point), the epidemic peaks and
subsequently declines, and therefore the cumulative
number of cases eventually saturates at the final size K.
This effectively means that the Richards model repre-
sents the incidence curve of a single wave of infection
which consists of a single peak of high incidence with a
single turning point for the outbreak. The readers may
consult published literature for more details on the
Richards model and its application to disease epidemics
[17-19,21]. The reproduction number of disease is esti-
mated by determining the rate of disease propagation at
the early stages of the epidemic before the turning
point. For estimating parameters through model fitting,
the explicit solution of the Richards model, given by

K
o= X @

[1 + efm(tfr)] a

was used, where 7 is constant of integration related to
the time for change in the growth rate of the cumulative
cases. By fitting this solution to the cumulative case
counts, the rate of infection spread (r) at the onset of
each outbreak was obtained. Assuming that the genera-
tion time (the average time taken for the primary case
to infect secondary cases [22]) follows a gamma distri-
bution with shape parameter o and scale parameter 3
[23,24], the reproduction number can be estimated as
Ry = (1 + rB)” using the moment generation method
[25]. The terminology of effective reproduction number,
R., is used for the second wave, given immunity from
the first wave in the population. Turning points of the
outbreaks (t,,) were also estimated by determining the
inflection points at which I(¢,,) = K/(1 + a)''* We
should point out that previous work [19] has referred to
the parameter 7 as the turning point, which is theoreti-
cally incorrect; although in numerical terms it may lead
to approximations that are close to the actual turning
point. We also estimated the doubling time (the time it
takes for the number of cases to double) at the early
stages of the outbreak as t; = T'In 2(R, - 1) [22].

Generation time

Based on epidemiological studies conducted in the Uni-
ted States for the infector-infectee pairs in households
[23], an average generation time of 2.9 days was consid-
ered with a standard deviation of 1.4 days for the
Gamma distribution with o = 4.2 and B = 0.68 [24]. We
estimated Ry and R, using this generation time and also
a shorter average generation time of 2.5 days with stan-
dard deviation of 0.9 days [26] that follows a Gamma
distribution with shape and scale parameters o = 7.72
and 8 = 0.324, respectively.
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Data collection

Daily number of laboratory-confirmed cases of HIN1
influenza infection were obtained from influenza data-
bases of Manitoba Health for both waves of the 2009
pandemic in spring (total of 891 cases between May 2
and August 5) and fall (total of 1,774 cases between
October 1, 2009, and January 3, 2010), classified for each
of the 11 health regions in the province of Manitoba,
Canada (Figure 1). The number of reported cases per
health region (sample size) determined which health
regions were included in the first wave analysis (Burnt-
wood, North Eastman, Norman, Interlake, Winnipeg)
and second wave analysis (Brandon, Central, Assiniboine,
Interlake, Winnipeg). Only health regions with more
than 50 identified cases were considered for this study.

A laboratory-confirmed case was defined as an indivi-
dual with influenza-like illness or severe respiratory ill-
ness who tested positive for pandemic HIN1 influenza A
virus by real-time reverse-transcriptase PCR (RT-PCR) or
viral culture. The first case of HIN1 infection in Mani-
toba was identified (tested positive) on May 2, 2009, and
data were reported by the earliest date of symptom onset,
initial care, specimen collection, hospital admission, and/
or intensive care unit admission. For the present study,
data use was approved by the Human Research Ethics
Board of the University of Manitoba (H2009:339) and
Health Information Privacy Committee of Manitoba
(2009/2010-40).

Model fitting

The solution of the Richards model was fit to the cumula-
tive number of confirmed cases by applying the nonlinear
least squares method using the R-language and environ-
ment for statistical computing. All fits were performed
starting from the day on which the first laboratory con-
firmed case was identified in the associated health region.
The turning point (¢,,) of the outbreaks was determined
using the Newton-Raphson method at the inflection point.

Results

For the average generation time of 2.9 days, estimates of
fitting parameters, and Ry and R, with 95% confidence
intervals for the best fit to data for cumulative reported
cases in different health regions are summarized in
Tables 1 and 2. Estimates associated with the shorter
generation time (2.5 days) are reported in Table 3.

First wave

The most severely affected health regions during the
spring wave were Burntwood, North Eastman, and Nor-
man in northern Manitoba, where the majority of remote
and isolated communities, and aboriginal reserves (many
of them without road access) are located. A total number
of 300 HIN1 cases were confirmed in these regions.
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Assuming the average generation time of 2.9 days, the
mean R, was estimated to be 2.24 (95% CI: 1.93-2.88) for
Burntwood, 1.70 (95% CI: 1.60-1.88) for North Eastman,
and 1.60 (95% CI: 1.49-1.80) for Norman (Table 1).
Other impacted health regions included Interlake, and
Winnipeg which is the largest urban centre in the pro-
vince where 57% of the Manitoba population resides.
Estimates of Ry according to the best fit to data for these
regions are 1.55 (95% CI: 1.45-1.72) and 1.71 (95% CI:
1.60-1.89), respectively. The variability in these estimates
may in part be due to different generation times across
populations and geographic areas. When considering a
shorter generation time of 2.5 days for Burntwood, esti-
mates of Ry reduce with a mean value of 2.1 (Table 3),
but still remain above those of Winnipeg health region
with the average generation time of 2.9 days. Using the
data for the entire province, estimates of R, and its asso-
ciated range remain close to those of the Winnipeg
health region. Our results indicate that the turning points
of epidemics started in the first week of June 2009, with
the earliest in Burntwood on June 5 and the latest in
North Eastman on June 14. Given the later onset of pan-
demic outbreaks in Burntwood, the estimated turning
points indicate a more rapid spread of disease in north-
ern part of the province. This can be further demon-
strated by evaluating the doubling time, which is t; = 1.6
days for the Burntwood health region with an average
generation time of 7' = 2.9 days; while the doubling time
for the Winnipeg health region is approximately 1.2 days
longer (¢, ~2.8). Best fits for Burntwood, Winnipeg, and
the entire province of Manitoba for the spring wave are
illustrated in Figure 2a-c.

Second wave

During the second wave, Central, Brandon, and Assini-
boine were the most impacted health regions in the south-
ern part of the province of Manitoba. The mean effective
reproduction number R, was estimated to be 1.63 (95%
CI: 1.56-1.74) for Central, 1.74 (95% CI: 1.57-2.07) for
Brandon, and 1.49 (95% CI: 1.46-1.52) for Assiniboine
health regions with the average generation time of 2.9
days (Table 2). For comparison purposes, R, was also esti-
mated for Interlake, Winnipeg, and for the entire province.
We observed that R, estimates for Interlake and the entire
province remained virtually the same for both waves, but
slightly increased for Winnipeg in the second wave. Turn-
ing points of the outbreaks were projected between
November 7 and 12. The results of parameter estimates
are reported in Table 2, and best fits for Central, Winni-
peg, and Manitoba are illustrated in Figure 2d-f.

Two-wave comparison
The occurrence of pandemic outbreaks appeared to be
associated with a geographic shift from northern Manitoba
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(e.g., Burntwood, North Eastman, and Norman) in the first
wave to more southern parts of the province (e.g., Assini-
boine, Central, and Brandon) in the second wave (Figure 1).
Estimates for the first wave indicate that the plausible range
of Ry for the entire province of Manitoba is virtually

identical to that obtained for its largest urban centre (the
Winnipeg health region). In the second wave, transmissibil-
ity appears to have been lower for the entire province than
the Winnipeg health region. In comparing timelines of epi-
demic spread, our estimates of turning points show that the
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Table 1 Estimates of fitting parameters and the basic reproduction number for the first wave of the 2009 pandemic in

different health regions in the province of Manitoba

Parameters

Health Region r (95% Cl) K (CRO)* tm Ry (95% ClI)

Burntwood 0.3116 (0.2503-0.4208) 187 (186) June 5 2.24 (1.93-2.88)
North Eastman 0.1991 (0.1734-0.2390) 56 (56) June 14 0 (1.60-1.88)
Norman 0.1746 (0.1458-0.2217) 57 (58) June 8 0 (1.49-1.80)
Interlake 0.1606 (0.1353-0.2023) 53 (54) June 14 1.55 (145-1.72)
Winnipeg 0.2001 (0.1730-0.2397) 395 (401) June 9 1 (1.60-1.89)
Manitoba 0.1949 (0.1700-0.2306) 878 (891) June 9 9 (1.58-1.84)

*CRC cumulative reported cases. Estimates correspond to the best fit of the Richards model to the cumulative number of confirmed cases. 95% confidence

interval for Ry corresponds to the average generation time of 2.9 days.

time interval for the pace of faster epidemic growth (the
period before turning point) was comparable to that of the
first wave, and occurred about 5 to 6 weeks after the onset
of outbreaks in Manitoba. This is notwithstanding higher
levels of pre-existing immunity and wider use of antiviral
drugs in the second wave before vaccine distribution
(which were expected to synergistically decelerate the rate
of disease spread).

Discussion and conclusions

In the event of an emerging disease, estimates of transmis-
sibility and other parameters pertinent to the nature of the
infection provide critical information for guiding public
health in optimizing health policy decisions and mitigating
the impact of disease on affected populations [27]. In the
case of the 2009 pandemic, estimates of Ry helped charac-
terize the epidemiological patterns of early disease spread
in urban centres with large populations [9,10,12], and
adapt preparedness measures to address the urgent situa-
tion in these settings [28,29]. However, such estimates
were not available for remote and isolated communities
and other residential areas with small populations (e.g.,
Indigenous peoples on reserves), which experienced dis-
proportionate rates of illness with poor outcomes, in parti-
cular during outbreaks in the spring wave. In Canada,
severe outbreaks were observed in several locations in the

province of Manitoba during the first wave, most notably
in communities in the Burntwood, Norman and North
Eastman health regions.

In contrast to previous work on estimating R, [9,10,27],
the results of this study suggest a considerable geographic
variation in transmissibility of the 2009 pandemic for the
first wave, with estimates comparable to those of the 1918
(HIN1-Spanish) pandemic strain between 1.8 and 3.0 [12].
For the second wave in Manitoba, our estimates indicate a
reduction in R, with ranges that are considered to be of
moderate transmissibility and comparable to those of the
1957 (H2N2) (range: 1.5-1.7) and 1968 (H3N2) pandemics
(range: 1.6-2.2), yet significantly higher than the transmis-
sibility of seasonal influenza (range: 1.1-1.4) [12,30]. The
higher estimates of R in the first wave of the 2009 pan-
demic are linked to outbreaks in remote and isolated com-
munities, and populations of relatively small size; although
estimates of the urban centre of the Winnipeg health
region are close to the upper bound of previous estimates
[12]. Compared to estimates in the province of Ontario
(range: 1.25-1.38) [27], and national Canadian estimates
(range: 1.12-1.54) [19], the results of this study show that
projecting the transmissibility using data for large-scale
epidemics may not faithfully characterize the transmission
pattern of early spread in rural areas and isolated
communities.

Table 2 Estimates of fitting parameters and the effective reproduction number for the second wave of the 2009
pandemic in different health regions in the province of Manitoba

Parameters

Health Region r (95% Cl) K (CRC)* tm Re (95% CI)

Brandon 0.2064 (0.1664-0.2787) 97 (98) Nov 11 1.74 (1.57-2.07)
Central .1826 (0.1644-0.2067) 271 (270) Nov 9 1.63 (1.56-1.74)
Assiniboine 1459 (0.1378-0.1553) 201 (202) Nov 12 149 (146-1.52)
Interlake 1698 (0.1469-0.2049) 149 (148) Nov 12 1.58 (1.49-1.73)
Winnipeg 0.2470 (0.2127-0.2973) 702(706) Nov 7 1.92 (1.76-2.17)
Manitoba 11899 (0.1731-0.2113) 1764 (1774) Nov 9 1.67 (1.60-1.76)

*CRC cumulative reported cases. Estimates correspond to the best fit of the Richards model to the cumulative number of confirmed cases. 95% confidence

interval for R, corresponds to the average generation time of 2.9 days.
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Table 3 Estimates for Ry, and R. with 95% confidence
intervals with the average generation time of 2.5 days

First wave Second wave

Health Region R, (95% ClI) Health Region R, (95% ClI)

Burntwood 2.10 (1.83-2.68)  Brandon 1.65 (1.50-1.95)
North Eastman 2 (1.52-1.78)  Central 1.56 (1.49-1.65)
Norman 3 (143-1.71)  Assiniboine 143 (1.40-1.46)
Interlake 8 (1.39-163)  Interlake 1(143-1.64)
Winnipeg 2 (152-1.78)  Winnipeg 1 (1.67-2.03)
Manitoba 0 (1.51-1.74)  Manitoba 1.59 (1.52-1.67)

The results of this study have several important implica-
tions for future planning to meet the threat of novel influ-
enza viruses. Of greatest concern to public health are the
geographic spread, severity, time course of an outbreak,
and determining the most effective utilization of available
social, preventive, and therapeutic resources to mitigate
the impacts of an emerging disease. Understanding the
relationship between differential severity and differential
transmissibility of a disease in distinct populations can
inform possible scenarios for allocation and optimal distri-
bution of health resources prior to and during the spread
of an infection to reduce vulnerability of the populations
and alleviate disease outcomes. Disease management is
also concerned with the transmissibility that is closely
related to the final size of an epidemic in the long-term
disease dynamics. The parameter R, has a clear biological
significance: it determines how fast the infection will
spread through a population that has been previously
unexposed to the disease, its meaning is independent of
the model used to estimate its value, and it is dimension-
less and thus directly comparable across populations and
geographic regions. Our investigation in this study pro-
vides compelling evidence for the existence of strong links
between transmissibility and differential severity of the dis-
ease, in particular in communities with limited access to
healthcare. In small communities with strong social ties
(e.g., Indigenous populations), frequent interactions
between individuals are considerably higher than those in
large urban centres, which can result in repeated exposure
to infection and may account for a higher between-house-
hold transmission rate comparable to the rates of second-
ary household transmission observed at more southern
latitudes. Given factors such as multigenerational house-
holds, high between-household social interactions, envir-
onmental characteristics, limited access to healthcare, and
differential prevalence of predisposing health conditions
and other types of health disparities, disease control strate-
gies for remote and isolated communities may be signifi-
cantly different from those applied to urban centres. Early
real-time estimates of transmissibility will therefore
be crucial for identifying the type and intensity of
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intervention measures that are effective in disease contain-
ment. In the absence of such information during the early
stages of the 2009 pandemic, the existing recommenda-
tions for the use of antiviral drugs were modified to
include the treatment of moderate to severe cases and
individuals with pre-existing conditions or those at risk of
developing poor outcomes, but to exclude treatment of
mild cases or contacts [31]. For future planning, a less
conservative strategy may be beneficial for remote and iso-
lated communities that are more likely to suffer from
increased rates of disease transmission. A less conservative
strategy might include a broader coverage of antiviral
drugs with possible extension to prophylaxis of close con-
tacts in these “high-risk” populations. Although not as
cost-effective as vaccination, antiviral use for treatment
and post-exposure prophylaxis is far more economical
than hospitalization or intensive care. Furthermore, with-
out a virus-specific vaccine (which, for example, could
have been the case in the fall wave of the HIN1 pandemic
had the herald wave not struck in the spring of 2009), anti-
viral medication may be the only pharmaceutical option
and therefore availability and strategic use of drugs is cru-
cial for mitigating disease in these vulnerable commu-
nities. With unique population characteristics that place
some remote and isolated communities at increased risk
for adverse health consequences [1], it is imperative for
public health officials to identify transmission characteris-
tics of early spread for the implementation of effective, fea-
sible, and more economical health responses [32,33].

This study has several limitations that warrant further
investigation. For estimating the transmissibility of differ-
ent health regions, we used data for laboratory confirmed
cases of HINT1 infection, which may introduce some bias
due to differential rates of testing across age groups, over
time, and possibly between different health regions. It is
difficult to assess the magnitude and direction of such
biases, but we understand that they influence estimates
and comparative analysis of R, within and between health
regions. While our results demonstrate the variability in
diseases transmissibility in different population settings,
identification of factors responsible for such variation
remains an important objective for future work, and in
the context of the 2009 pandemic, understanding the role
of these factors merit further population-specific
research. For example, we used estimates of generation
times from two previous study, which appear to be higher
than the early estimate of 1.9 days for generation times
based on the La Gloria data from initial outbreaks in
Mexico [9]. These estimates may have been slightly
inflated by the inclusion of a small number of imported
cases. Nevertheless, for a given generation time, estimates
of R, for remote and isolated communities will remain
higher than those for more urban regions. However, the
generation time is a key parameter in our study, and we
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note that it may vary between different populations with
distinct demographic variables, which will in turn affect
estimates of the reproduction number. Furthermore, R,
can be calculated as the product of the frequency of
effective contact (leading to transmission) and the

average infectious period. It is possible that in remote
communities, due to the limited access to health services
and medical care, an average infectious individual may
experience a longer contagious period than an average
infectious person in urban centres, hence contributing to



Mostaco-Guidolin et al. BMC Research Notes 2011, 4:537
http://www.biomedcentral.com/1756-0500/4/537

a greater reproduction number without having to make
more frequent contact per unit time.

The model employed here does not include the immune
status of the populations; yet we understand that estimates
of Ry for the first wave may be affected by pre-existing
immunity [34,35], and therefore the actual value of Ry
(when the entire population is susceptible) may be greater
than estimates reported here. For the second wave, the
effect of pre-existing immunity becomes more pro-
nounced by the reduced level of susceptibility due to infec-
tion in the spring wave in northern communities.
Furthermore, unlike the first wave, antiviral drugs were
used earlier and in a much wider scale [3]. There were
also some limitations in data for laboratory confirmed
cases of the second wave. For instance, in order to main-
tain the laboratory capacity and responsiveness, laboratory
testing of non-severe cases was suspended on November
20, 2009, unless infected individuals met indications out-
lined in the Manitoba Health Clinical Care Guidelines for
Pandemic HIN1. Although this modification was made
well beyond the establishment phase of the second wave,
it may have resulted in a significant under-reporting at the
peak of pandemic outbreaks, and therefore estimates of
the final size of the cumulative number of confirmed cases
and other fitting parameters may be influenced. Despite
these limitations, the findings of this study underscore the
importance of rapid identification of transmission charac-
teristics in the early stages of an emerging disease to iden-
tify effective and population specific intervention
strategies, and optimize health responses.
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