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Which clustering algorithm is better for
predicting protein complexes?
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Abstract

Background: Protein-Protein interactions (PPI) play a key role in determining the outcome of most cellular
processes. The correct identification and characterization of protein interactions and the networks, which they
comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as
pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism.
Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage
display are also used to reveal protein interaction networks.

Results: In this paper we evaluated four different clustering algorithms using six different interaction datasets. We
parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets
produced experimentally by Yeast 2 Hybrid (Y2H) and Tandem Affinity Purification (TAP) methods. The predicted
clusters, so called protein complexes, were then compared and benchmarked with already known complexes
stored in published databases.

Conclusions: While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more
promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other
reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the
highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL
in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed
algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are
presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/
projects/ppireview.htm

Background
Proteins are the main actors responsible for virtually
every function within a cell. While some proteins are
characterized by a unique function, the majority of them
operate in coordination with other proteins forming PPI
networks to carry out processes in the cell. Such pro-
cesses include cell cycle control, differentiation, protein
folding, signaling, transcription, translation, post-transla-
tional modification and transportation. Trying to

understand and predict protein functions at a systems
level is neither a straightforward nor a trivial task. Due
to such issues, which range from wet-lab technical chal-
lenges to the innate complexity of high dimensional
data analysis, function prediction has become one of the
most important and difficult challenges in current com-
putational biology research.
Some of the most well known techniques to reveal

information about the interaction of proteins are the
pull down assays [1] and tandem affinity purification [2].
State of the art high-throughput methods such as yeast
two hybrid systems–Y2H [3], mass spectrometry [4],
microarrays [5] and phage display [6] are able to gener-
ate enormous datasets of PPIs with high quality of infor-
mation. While the aforementioned techniques are
valuable tools to capture the role of molecular functions
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at a systems level, their main drawback is that the
resulting datasets are often incomplete and exhibit high
false positive and false negative rates.
In addition to the direct experimental data, a wide

range of large biological databases storing information
about validated or predicted PPI data is also available.
The Yeast Proteome Database–YPD [7], for example,
combines protein-interaction and other data from the
literature. A number of other important databases that
curate protein and genetic interactions of yeast from the
literature have been developed, including the Munich
Information Center for Protein Sequences–MIPS data-
base [8], the Molecular Interactions–MINT database [9]
the IntAct database [10], the Database of Interacting
Proteins–DIP [11], the Biomolecular Interaction Net-
work Database–BIND [12], and the BioGRID database
[13]. A number of public repositories for human PPIs
are currently available, including the databases: BIND
[12], DIP [11], IntAct [10], MINT [9] and MIPS [14].
There exist also organism specific databases such as the
Human Protein Reference Database–HPRD [15] or the
HPID [16] for human or DroID [17] for Drosophila.
Proteins can either act individually or as a part of big-

ger system to perform an intricate process in the cell.
Thus, proteins often collaborate and form stable associa-
tions, termed protein complexes [4,18,19]. In a larger
network consisting of nodes (proteins) and edges (PPI
interactions), a protein complex corresponds to a dense
subgraph (aggregation of highly interconnected vertices)
or even a clique. Identification of such complexes in PPI
graphs is an important challenge and can be of valuable
help in understanding the cell functions. Computational
methods such as MCODE [20], jClust [21], Clique [22],
LCMA [23], DPClus [24], CMC [25], SCAN [26], Cfin-
der [27], GIBA [28] or PCP [29] are graph-based algo-
rithms that use graph theory to detect highly connected
subnetworks. DECAFF [30], SWEMODE [31] or STM
[32] have been developed to predict protein complexes
incorporating graph annotations, whereas others like
DMSP [33], GFA [34] and MATISSE [35] take also the
gene expression data into account. A very useful review
article that describes and compares the aforementioned
techniques can be found in [36].
In this study, we to go one step further than [36] and

benchmark four different clustering algorithms against
six different datasets not covered in [36] to evaluate
how well widely used clustering algorithms like the
aforementioned can predict protein complexes from PPI
data. The algorithms which we tested include the MCL
[37], RNSC [38], Affinity Propagation [39] and Spectral
clustering [40]. All these algorithms assign each protein
of the PPI graph to a cluster. The datasets used are:
Tong [41], Krogan [42], Gavin 2002 [4], Gavin 2006
[19], DIP [11] and the MIPS [43]. To evaluate the

accuracy and the percentage of valid predictions of the
algorithms against the specific datasets we used the
MIPS [8] and the set of complexes derived from [44] as
benchmarks.

Methods
Data preparation integration
In this section, we give a short description of the data-
sets that were used in this study. All of the current data-
sets hold information about unweighted PPI
associations.
Tong dataset [41]
This network consists of 7430 edges and 2262 vertices.
A genetic interaction network was mapped by crossing
mutations in several genes into a set of viable gene yeast
deletion mutants scoring the double mutant progeny for
fitness defects. The interactions of this network were
produced by predicting the functions of the interactive
elements. These elements are often produced by bring-
ing together functionally related genes, components, or
proteins that belong to the same pathway. The genetic
network exhibited dense local neighbourhoods.
Krogan dataset [42]
This dataset consists of 7088 edges and 2675 vertices
and contains different tagged proteins of the yeast Sac-
charomyces cerevisiae organism. In the original article,
the MCL [37] algorithm was used to cluster and orga-
nize the proteins into several groups.
Gavin 2002 [4] and Gavin 2006 [19] datasets
Gavin 2002 [4] dataset consists of 3210 edges and 1352
vertices, whereas Gavin 2006 [19] consists of 6531 edges
and 1430 vertices. In the first dataset, large-scale tandem
affinity purification and mass spectrometry were used to
characterize multi-protein complexes in Saccharomyces
cerevisiae. Extending this information to the human
genome, this dataset provides an outline of the eukaryo-
tic proteome as a network of protein complexes. Using
the whole network, we try to see how successfully the
various methods detect the network complexes. The
second dataset contains the first genome-wide screen
for complexes in yeast.
DIP dataset [11]
The Database of Interacting Proteins (DIP) stores
experimentally validated protein-protein interactions.
We used this database to isolate a network of 17491
edges and 4934 vertices. We included this dataset for
our experiments because, aside from protein-protein
interactions, the DIP database provides abundant anno-
tations to allow deeper understand of the protein
functions.
MIPS dataset [43]
The Munich Information Center for Protein Sequences
(MIPS) provides resources mainly related to genome
information. Most of the databases that store evidences
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about a diversity of genomes of distinctive organisms are
manually curated. In addition, 400 genomes, which are
annotated automatically, are also integrated. In this case
study, the network consists of 12526 edges and 4554
vertices given by the MIPS database.
It should be noted that our experiments for testing

clustering algorithms are strictly limited to unweighted
PPI datasets. Other kinds of protein interactions
(Enzyme-Inhibitor and antigen-antibody) concern speci-
fic subcategories of interactions that can not form large
scale networks as PPI datasets do. For example, the two
datasets of antigen-antibody complexes presented in
[45] could not be used in our survey as they contain
very few data points and are derived from different
organisms. It is notable that RNSC algorithm does not
take edge weights into account in its function.

Clustering techniques
The algorithms, used here, to predict protein complexes
include the MCL [37], RNSC [38], affinity propagation
[39] and spectral clustering [40]. The decision to include
these algorithms in our setting was reached due to the
fact that they are widely used but also because they per-
fectly complement the study carried out in [36]. We
wish to make clear that we did not evaluate any algo-
rithms for clique detections since such algorithms spe-
cialize in detecting fully connected sub-areas of the
network. Such a comparison would be unfair since clus-
tering techniques tend to predict a much higher number
of complexes, and often detect the cliques. For the MCL
and RNSC algorithms, the original versions were used.
These can be found at: http://micans.org/mcl/ and
http://rsat.bigre.ulb.ac.be/rsat/index_neat.html respec-
tively. For the spectral clustering and affinity propaga-
tion algorithms we used the versions incorporated
within the jClust [21] application. Below we give some
information about the main concept that the algorithms
are based on.
MCL [37]
The MCL algorithm is a fast and scalable unsupervised
clustering algorithm. It is one of the most widely used
algorithms and is it is based on simulating stochastic
flows in networks. The MCL algorithm can detect clus-
ter structures in graphs by taking advantage of a mathe-
matical bootstrapping procedure. The process is trying
to perform random walks through a graph and determi-
nistically compute their probabilities to find the best
paths. It does so by using stochastic Markov matrices.
The algorithm works by alternating the inflation para-
meter, which iteratively calculate the set of transition
probabilities. The inflation operator implements a sto-
chastic matrix transformation to emphasize larger prob-
abilities and deemphasize smaller ones.

RNSC [38]
The RNSC algorithm initially searches for a low cost
clustering by initializing a random clustering. It then
iteratively assigns nodes to different clusters randomly
to improve the clustering cost. In order to avoid local
minima, RNSC makes diversification note transfers and
performs multiple experiments. Furthermore, it main-
tains dynamic data structures to prevent exploring back
a previously visited partitioning. The functionality of the
RNSC algorithm depends on various parameters needed
for the Tabu search step (Tabu length and Tabu list tol-
erance), as well as the terminating criteria (naïve stop-
ping tolerance and scaled stopping tolerance) and other
(maximal number of clusters, diversification frequency
and shuffling diversification length). Further analysis
concerning these parameters can be found in [38].
Affinity Propagation [39]
Affinity propagation is an unsupervised algorithm and
thus the number of clusters are automatically calculated.
The idea behind this algorithm is to find sub-paths,
which allow easy message exchanges between nodes. It
takes as input a similarity matrix, which keeps the dis-
tances between all possible pairs of data points whereas
it initially considers all data points as potential “exem-
plars”. In later steps, real-valued messages are exchanged
between the nodes until a set of exemplars and corre-
sponding clusters emerges with high quality. The main
parameter of this algorithm is the ‘preference’, which
controls how many data points are selected as
exemplars.
Spectral clustering [40]
This algorithm tries to detect clusters in a graph, where
nodes are connected with highly-similarity. The algo-
rithm also tries to find connections between such areas
that should be weak, constituted by edges of low simi-
larity. The aim is to identify highly connected clusters
and, at a later stage, filter the inter edges within the
cluster. The only parameter required is the user-defined
number of clusters.

Evaluation
To evaluate the algorithms against specific datasets that
already contain information about recorded protein
complexes we used the MIPS [8] database and the set of
complexes derived from [44] (denoted as BT_409) as
benchmarks. Concerning the MIPS protein complexes
dataset, we observed that often information is stored in
a hierarchical structure. To avoid redundancies, the par-
ent complexes were discarded and the sub-complexes
were retained. The final evaluation dataset comprises
220 complexes. The BT_409 dataset similarly contains
409 complexes and is composed by applying a boot-
strapping strategy on tandem affinity purification data.
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It and has been also used as a benchmark dataset in
other studies such as [36].
To determine whether a sub-graph represents a pro-

tein complex or not, we compared each derived cluster
against every recorded protein complex in the MIPS or
BT_409 dataset. We used the same evaluation metric
adopted in [20], called the geometric similarity index.
This method considers a predicted complex as valid if
I2

A ∗ B
> 0,2, where I is the number of common pro-

teins, A the number of proteins in the predicted com-
plex and B the number of proteins in the recorded
complex. Finally, we kept the highest geometric similar-
ity index (score), which a predicted cluster achieved
over the recorded ones.
Moreover, 3 different matching statistical metrics, that

were presented in [46] and [36], were used in the eva-
luation process of the tested algorithms. These are sen-
sitivity (Sn), Positive Predictive Value (PPV) and
Geometrical Accuracy (Acc_g). The mathematical for-
mulas of the above statistical measurements are given
below. Given n benchmark complexes and m predicted
complexes, let Tij denote the number of proteins in
common between ith benchmark complex and jth pre-
dicted complex. Sn, PPV and Acc_g are then defined as
follows:

Sn =

n∑

i=1
maxj{Tij}
n∑

i=1
Ni

,PPV =

m∑

j=1
maxi{Tij}
m∑

j=1
Tj

,Acc g =
√
Sn ∗ PPV (1)

Ni indicates the number of proteins belonging to
recorded complex i and Tj indicates the total number of
members of j predicted complex assigned to all bench-
mark complexes. These metrics are widely used to mea-
sure the correspondence between the result of a
classification and a reference and to provide an overview
of how accurately the clustering techniques can detect
the protein complexes from PPI data.
The aforementioned metrics come with their strengths

and their limitations. In the case of sensitivity (Sn), if a
method predicts very big complexes with many proteins,
the Sn score will tend to have very high values. The
PPV value on the other hand, does not evaluate overlap-
ping clusters properly. In addition, all of the evaluation
metrics described above assume that a complete set of
real protein complexes is available, but this does not
necessarily corresponds to the real experimental data.
Finally, two more metrics were used for our evaluation

procedure. These are the absolute number of predictions
and the mean score of valid predicted complexes. The
absolute number of predicted clusters is a metric that
measures the efficiency of the tested algorithms to iden-
tify as many protein complexes as possible in a PPI

graph. This metric varies as the datasets tested vary
regarding their density and the number of protein com-
plexes which they contain. The absolute number of valid
predictions is represented as a/b where a is the number
of valid predicted complexes and b the total number of
the derived clusters. The mean score of valid predicted
clusters indicates the mean geometric similarity index of
the predicted clusters that surpass the threshold of 0.2.
This metric is used in order to measure how well a
recorded complex is predicted by the algorithms tested.

Results
Extensive experiments to compare the aforementioned
techniques were performed. The comparison of these
methods is less biased than in other reviews so far such
as [36,46] where different types of algorithms based on
different clustering approaches are compared with each
other, which can be misleading.
During the first step of our experiment, the four algo-

rithms are applied on the six aforementioned datasets
and the resulting clusters are compared respectively.
During the second step, the results of the tested algo-
rithms are filtered according to the methodology intro-
duced in [47]. A thorough analysis was performed to
show the consequence of the post-clustering filter para-
meters on each of the tested algorithms and how they
can affect the final results. For our experiments, a wide
range of values and parameters for the algorithms para-
meters was essayed. However, it must be noted that
there is no strict way to set the algorithms parameters
in order to produce the optimal results for every dataset.
For instance, the MCL algorithm produces higher valid
prediction rates, which means that the percentage of
valid predicted clusters to total in the MCL results is
higher, when the inflation parameter is set to 1.8 and
higher accuracy rates when it is set to 2. In order to
compare MCL results with other algorithms we used
those produced by MCL when the inflation parameter is
set to 1.8. More information concerning the MCL algo-
rithm behavior across different values of the inflation
parameter, can be found in Additional File 1. For the
affinity propagation algorithm, we used the scripts (pre-
ferenceRange.m and apclusterK.m) which are available
at [48]. In order to determine the parameters of the
algorithm we used the eigengap heuristic [49] which
searches the structure of the network in order to auto-
matically elucidate the number of clusters in the net-
work. Finally, for the RNSC algorithm we used the
values presented in [36,46] due to the numerous para-
meters that this algorithm uses.
More detailed information about the results of our

experiments, presented in this manuscript, is addition-
ally provided as supplementary material (Additional File
1). Figures 1 and 2 show the percentage of valid
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predictions of every algorithm for each dataset and the
absolute number of valid predictions, which indicates
the number of the derived clusters that overcome the
threshold of 0.2 of the geometric similarity index metric

compared to the recorded MIPS complexes or BT_409
dataset.
A trade-off between the absolute number and the per-

centage of valid predictions is apparent for the spectral

Figure 1 The percentage of valid predictions of every algorithm on each dataset. a Using the MIPS recorded protein complexes as
evaluation set. b Using BT_409 as evaluation set
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clustering algorithm. Although it surpasses, in most
cases, all the other algorithmic techniques in the percen-
tage of valid predictions, it does not generate as many
valid predicted clusters as the MCL and the RNSC do.

According to Figures 1 and 2, the MCL and RNSC algo-
rithms achieve the best prediction rates in several cases
(two out of six in Figure 1a and three out of six in Fig-
ure 2a) and the best performances regarding the

Figure 2 The absolute number of each time valid predictions on each dataset. a Using the MIPS recorded protein complexes as evaluation
set. b Using BT_409 as evaluation set
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absolute number of valid predictions. The tested algo-
rithms produce more valid clusters when the BT_409
evaluation set is used compared to the MIPS dataset.
This is expected as BT_409 contains almost the double
number of protein complexes compared to the MIPS
golden standard (409 against 220 respectively). As a
result, the rate of valid prediction is higher for all algo-
rithms when the BT_409 evaluation set is used. For
instance, in Figure 3, the percentage of valid predictions
of the MCL algorithm for each dataset is shown. In all
cases, the MCL algorithm achieves higher rates when
the BT_409 evaluation set is used. In the Gavin 2002,
Gavin 2006, and Krogan datasets, the difference between
the two evaluation sets is very obvious, while in the
MIPS and Tong datasets it is minimized.
In order to check the robustness of the tested algo-

rithms against noise, we performed experiments with 3
altered datasets presented in [46]. The results are pre-
sented in Additional File 1, Table S5, and each dataset
is noted as complexes_rm_i_ad_j, where i and j indicate
the percentage of deleted and added edges respectively
to the PPI graph formed by the collection of MIPS
recorded protein complexes.
Figure 4, shows the performance of the algorithms

according to the geometrical accuracy metric. As we
mentioned before, the geometrical accuracy offers a

better insight concerning the quality of the results of
each algorithm as its value depends on the Sensitivity
(Sn) and Positive Predictive Value (PPV) metrics.

Discussion
We performed extensive experiments using four differ-
ent algorithmic strategies to detect protein complexes in
six PPI networks. For the evaluation process, two differ-
ent evaluations sets were used. These were a) the golden
standard of MIPS recorded protein complexes and b)
the BT_409 dataset.
In the cases where the MIPS dataset was used for eva-

luation, the spectral clustering algorithm achieved the
highest performance with respect to the percentage of
valid predictions compared to the other algorithms. On
the other hand, the RNSC and MCL algorithms were the
methods that clearly generated the most valid clusters.
Regarding the BT_409 evaluation set (see Figure 1b), the
RNSC algorithm performs as well as the spectral cluster-
ing whereas in some cases it surpasses it. The MCL and
RNSC algorithms performed best according to Acc_g
metric. These algorithms produced high quality results as
the derived clusters match more accurately the recorded
protein complexes in MIPS and BT_409 evaluation sets.
According to our results, in line with [36], the RNSC

algorithm behaved better than the other algorithms. It

Figure 3 The percentage of valid predictions of the MCL algorithm on every dataset. X axis: the datasets, Y axis: The valid predictions
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produced many valid clusters whereas in almost all data-
sets it was ranked as the second best algorithm with
respect to the percentage of the valid predictions (in
some cases surpassed spectral clustering algorithm) as

this can be seen in Figure 1. It should be noted that, if
the affinity propagation algorithm would be excluded,
the difference concerning the geometrical accuracy
between the RNSC and the other two algorithms (MCL

Figure 4 The performance of the algorithms concerning Acc_g metric on each dataset. a Using the MIPS recorded protein complexes as
evaluation set. b Using BT_409 as evaluation set
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and spectral clustering) would not be as big as the dif-
ference between the affinity propagation algorithm and
the others (MCL and spectral clustering).
The MCL and RNSC algorithms performed similarly

but in most cases, RNSC surpassed the MCL algorithm
by giving higher valid prediction rate. However, both
algorithms achieved high accuracy and high absolute
number of valid predicted clusters in all datasets com-
pared to the rest of the algorithms. On the other hand,
the MCL algorithm performed better in most cases
comparing to tother methods with respect to the mean
score of valid predicted complexes which shows a mean
geometric similarity index of the predicted clusters that
surpass the threshold of 0.2. This metric was used in
order to measure how well a recorded complex is pre-
dicted by the algorithms tested.
The Affinity propagation algorithm seemed to have

lower performance than the rest of the tested algo-
rithms. The number of iterations was set to the dataset
size. A direct and more generic comparison between the
Affinity propagation and the MCL algorithms can be
found at [50].
Finally, regarding the robustness of the algorithms

against noise, the spectral clustering and RNSC algo-
rithms performed best as it can be seen in Table S5 of
the Additional File 1. More specifically, spectral clus-
tering algorithm achieved the highest percentage of
successful predictions while the RNSC algorithm
achieved the highest performance with respect to the
geometrical accuracy metric and the absolute number
of valid predicted clusters. The affinity propagation
algorithm seems to be the most sensitive to the noisi-
ness of the data. On the other hand, the MCL algo-
rithm can be considered as the most stable one and
performs best when the noise in the data becomes
inordinate.
In the second phase of the performed experiments, the

results of the tested algorithms were filtered according
to the methodology introduced in [47]. A total number
of 17 different combinations of the post-cluster filtering
process were applied to the algorithms results, forming
a stringent or less stringent filter. The range of para-
meters for the four methods that constitute the applied
filter is shown in Table 1. Choosing a single parameter
value out of the proposed range would be meaningless
because the parameter method would become either too

rigorous and it would produce very few clusters (if it
was higher than the proposed maximum) or it would
add noise to the final data (if it was lower than the pro-
posed minimum).
All the results of our experiments with the varying

post-cluster filtering parameters are presented in Addi-
tional file 2 and Additional file 3. As expected, the den-
sity method has the biggest affect concerning the
number of the final clusters of each algorithm than any
other filtering method. The higher the value of this
parameter, the fewer the clusters, which were generated
by the tested algorithms that could pass the filter, are.
The Gavin 2006 and Krogan datasets are the best exam-
ples for the algorithm to be applied on, since they gen-
erated more clusters comparing to any other dataset.
On the other hand, the Tong dataset, due to its sparse-
ness, does not help the algorithms to achieve high pre-
diction rate or absolute number of valid clusters. When
the filtering step is added, all of the algorithms produce
extremely few clusters but with a higher probability of
these clusters to be valid.
Going one step further, we compared the five best

performances of each algorithm combined with the
post-cluster filtering process which also produced more
than ten final and more than three valid clusters. Had
this not been carried out, the comparison would be
biased because, for an example, one algorithm would
produce only one valid cluster, which would have 100%
score according to the geometrical accuracy metric.
Only in one case where affinity propagation algorithm
was evaluated against the MIPS golden standard dataset,
there were no results that could satisfy the above prere-
quisites. All of the results can be found in Additional
file 4: where the geometrical accuracy and the absolute
number of valid predicted clusters are plotted.
The first conclusion, which can be derived, is that all

algorithms achieved much higher values for geometrical
accuracy metric. Regarding the experiments performed
which use MIPS golden standard as evaluation set; in
most of the cases the affinity propagation algorithm
achieves the highest mean geometrical accuracy. How-
ever, this can be explained by the fact that the best
results achieved by affinity propagation algorithm pro-
duce fewer valid clusters than any other algorithm. On
the other hand, the RNSC algorithm seems to achieve
poorer performance for geometrical accuracy but,
together with MCL algorithm, they produce the most
valid predicted clusters.
When the evaluation set used is the BT_409 dataset,

the spectral clustering and the RNSC algorithms
achieve the best performance based on geometrical
accuracy metric. Concerning the absolute number of
valid predictions, the MCL and RNSC algorithms pro-
duced the highest scores. Notably, all algorithms

Table 1 Method parameters range of values

Parameter Value range

Density parameter [0.5, 0.7]

Best neighbor parameter [0.5, 0.75]

Cutting edge parameter [0.5, 0.75]

Haircut parameter [2,3] only integer values
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achieved higher accuracy values for BT_409 dataset
while their final valid clusters where approximately
equal to those produced when the MIPS golden stan-
dard dataset was used.
It could be said that the post-cluster filtering process

eliminated the differences between the algorithms
regarding the geometrical accuracy metric. However, in
many cases, spectral clustering and affinity propagation
algorithms produced very few clusters and their results
could not be exploited. Finally, it seems that all algo-
rithms produced better results when the filter para-
meters where set according to Table 2.

Conclusion
Six PPI network datasets were subjected to four differ-
ent algorithmic strategies. The motivation behind this
approach is to benchmark the clustering techniques and
measure their prediction accuracy to detect protein
complexes. For the evaluation process, two different eva-
luations sets were used. It is notable that we evaluated
algorithms that share similar concepts to cluster net-
works. After essaying various parameters for the afore-
mentioned algorithms we found that the RNSC and
MCL algorithms are more accurate in predicting PPI
complexes as they outperformed the other algorithms
concerning the geometrical accuracy metric and the
mean score of valid predicted complexes. In contrast,
the spectral clustering algorithm achieves the highest
valid prediction rate in our experiments but fails to sur-
pass the RNSC and MCL algorithms concerning the
geometrical accuracy metric and the absolute number of
the valid predicted clusters.

Additional material

Additional file 1: Supplementary tables. Summary of experimental
results using MIPS protein complexes as evaluation dataset

Additional file 2: Experimental results of each algorithm combined
with the filter process, using MIPS protein complexes as evaluation
dataset.

Additional file 3: Experimental results of each algorithm combined
with the filter process, using BT_409 protein complexes as
evaluation dataset.

Additional file 4: Figure S1. The performance of the five best
performances of each algorithm combined with the filter process
concerning the ACC_g metric on each dataset: (a) when the MIPS

golden standard is used for evaluation, (b) when the BT_409 dataset is
used for evaluation.
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