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number, thus providing insight into the evolution
of proteomes
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Abstract

Background: The sizes of proteins are relevant to their biochemical structure and for their biological function. The
statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of
proteomes.

Results: Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets
containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of
proteins can be roughly described with a gamma type or log-normal model, depending on the species. However
the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between
1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions
in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of
the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only
~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa) and archaeal
(283 aa) proteins are significantly smaller (33-40% on average). Average protein sizes in different phylogenetic
groups were: Alveolata (628 aa), Amoebozoa (533 aa), Fornicata (543 aa), Placozoa (453 aa), Eumetazoa (486 aa),
Fungi (487 aa), Stramenopila (486 aa), Viridiplantae (392 aa). Amino acid composition is biased according to protein
size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S
and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes.

Conclusions: Mathematical modeling of protein length empirical distributions can be used to asses the quality of
small ORFs annotation in genomic releases (detection of too many false positive small ORFs). There is a negative
correlation between average protein size and total number of proteins among eukaryotes but not in prokaryotes.
The %GC content is positively correlated to total protein number and protein size in prokaryotes but not in
eukaryotes. Small proteins have a different amino acid bias than larger proteins. Compared to prokaryotic species,
the evolution of eukaryotic proteomes was characterized by increased protein number (massive gene duplication)
and substantial changes of protein size (domain addition/subtraction).
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Background
The biological function of a protein is determined by its
tertiary, i.e., three-dimensional, structure, which in turn
is influenced by its primary structure, i.e. its amino acid
sequence. Besides the given order of amino acids (aa),
the total length of a protein is also important for deter-
mining the tertiary structure of any polypeptide. The
longer a protein is, the more options there are for
accommodating multiple secondary structures and fold-
ing loops [1-3]. The statistical distribution of the sizes
of proteins has been investigated by several groups in
the past, although with a limited number of representa-
tive taxa or focused on prokaryotes. Comparison of
average protein size in the proteomes of 5 archaeal, 15
bacterial and 2 eukaryotic species revealed marked dif-
ferences of protein size [4]. A larger study compared
also protein sizes in 16 archaeal, 67 bacterial and 5
eukaryotic species and came to a similar conclusion [5].
It is actually well established that eukaryotic proteins
are on average, significantly longer than bacterial pro-
teins, and these in turn are longer on average than
archaeal proteins [4,5]. However, previous studies have
not investigated whether there are protein size differ-
ences among eukaryotic organisms.
The fact that eukaryotic organisms have larger pro-

teins than prokaryotic species has been interpreted as a
true evolutionary trend towards an increase of protein
size [4,5]. It has been postulated that the evolution of
eukaryotic proteins was influenced by processes of
fusion of single-function proteins into extended multi-
functional and multi-domain proteins [5]. Fusion of
domains of given size could be predicted to give rise to
peaks of a multiple given size in the protein size histo-
grams given the discontinuity of domain sizes and the
limited number of different structural domain types.
Fusion of domains increases the average size of proteins
and this could potentially lead to a respective reduction
of the number of individual proteins in the genome.
The evolutionary forces that have shaped protein

number and size distributions in modern organisms are
unknown. Some groups have tried to find answers based
on theoretical models. According to the frequency of
stop triplets in the genetic code (= 3/64), the expected
size of an open reading frame (ORF) from a random
DNA sequence should be on average 64 nucleotides
long (~21 aa) [6]. However, since stop codons are biased
towards the nucleotides T and A, the expected size also
depends on the %GC content of the random sequence,
varying between 14 aa (for 35% GC) and 31 aa (for 60%
GC) [7]. According to a more detailed analysis of ORF
statistics, non-coding DNA sequences are not fully ran-
dom, but generate random ORF much longer than theo-
retically expected [8]. Nevertheless, a sharp cutoff is
found at 100 triplets (~33 aa) [8]. Since most

biologically active proteins are actually much larger than
50 aa, there must be a strong selective mechanism for
maintaining the coding capacity of DNA (ORF length).
Two theories have been postulated to explain the rela-

tion between protein origin and size distribution: the
starter-set and the random-origin hypotheses. The star-
ter-set hypothesis assumes that proteins originated from
a small set of starter sequences (functional domains)
with lengths of 4 aa, 15 aa or 50 aa which were
expanded by gene duplication and modification [9-13].
The premise of this hypothesis is that gene or exon
duplication and fusion were essential from the very
beginning of protein evolution for producing modern
sequences of all organisms, including prokaryotic and
eukaryotic species [14]. In contrast, the random-origin
hypothesis assumes that proteins emerged first from a
very large number of random heteropeptides [15-17].
The random-origin hypothesis assumes that the length
of proteins were initially determined by the “start” and
“end” signals that delimited the primitive genes and that
were distributed randomly along nucleotide sequences.
The random-origin hypothesis explains the appearance
of large proteins alone by chance [14,18]. The starter set
hypothesis assumes that primitive proteins were initially
very small (< 50 aa) but biologically active, and by
domain joining and gene fusion became gradually larger
[14,18].
In order to discriminate between those evolutionary

theories, is it important to know the frequency of small
proteins in the genomes of different species. It is also
relevant to determine the selective advantage of having
numerous proteins (gene duplications) or proteins of
larger size (biological functionality). Some researchers
have started by investigating which is the best theoreti-
cal model that underlies protein size distributions.
White (1994) examined 1,792 sequences and reported
that prokaryotic and eukaryotic protein sets had a simi-
lar statistical length distribution that could be described
by a gamma distribution with shape parameter equal to
two or with a distribution that results from the sum of
two exponential distributions [18]. A moderate fit to a
gamma-type distribution was also found by [19] whereas
[20] postulated a better fit to a log-normal distribution.
Some have argued that a log-normal function was more
appropriate because it describes distributions that arise
from the product of many random independent events
[20]. A stochastic model based on multiplicative pro-
cesses has also been used to explain protein length dis-
tributions [21].
Several groups have postulated that the sequence dis-

tributions of all organisms are similar and that it is pos-
sible to describe them in terms of simple mathematical
functions [14,18,20,22]. Considering that proteins
increase in length by addition or duplication, the log-
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normal distribution has been said to be less appropriate
[20]. Gamma distributions, on the other hand, result
from the addition of random intervals and have been
said to be more reasonable a priori [22].
A simple theory to explain why protein lengths can

follow gamma-type distributions [18], assumes that (i)
protein sequences have exponentially distributed ran-
dom lengths; (ii) there is a length dependence of protein
fold stability and potential for biochemical activity
which greatly limits the number of small proteins (< 100
aa). This theory assumes that maximal protein size (>
1,000 aa) is limited by the very frequent occurrence of
stop codons, whereas minimal size is determined by the
more limited biological usefulness of small proteins (<
100 aa) [14,18]. In support of the hypothesis that pro-
teins emerged first from random heteropeptides, it has
been shown that modern proteins have a 90% chance of
having a lengthwise distribution of amino acids that is
indistinguishable from the random expectation [14]. Pre-
liminary surveys concluded that the abundance of differ-
ent amino acids in proteins is not dependent on the
protein length or species of origin [23]. This suggest
that small and large proteins should have indistinguish-
able amino acid composition. It also implies that bacter-
ial and animal proteins (or other groups for that matter)
should have the same amino acid bias.
In this work we wanted to revise many of these

assumptions. We aimed to address the following ques-
tions: How does protein size vary in eukaryotic taxa?
Which evolutionary forces influence protein number
and protein size? Which theoretical function better
describes the observed distributions of protein sizes? Is
average protein size correlated to the total number of
proteins or to the GC content of DNA? How well are
small proteins annotated in the genomic releases? Is
there an amino acids bias according to protein size? In
order to answer those and other similar questions, we
analyzed two independent sets of proteomic data.

Results
Construction and curation of protein datasets
We decided to compare the protein size distributions of
different taxa in order to examine the factors that deter-
mine protein function, stability and evolutionary trends.
In order to achieve this, we first had to construct and
validate two datasets for this purpose (set 1 and 2).
Selection of biological species, automatic filtering and
manual curation of the protein data files was a necessary
requirement to ensuring the reliability of the statistical
analysis that was performed subsequently. Set 1 was
biased towards eukaryotes and plant species, whereas set
2 was biased towards prokaryotic species.
For dataset 1, the publicly available sequence genomic

files were downloaded (see Additional file 1: Table S1) and

duplicated protein sequences (identical amino acid
sequence, or a sequence being an identical subsequence of
other) were removed to yield a non redundant (nr) set (see
Additional file 1: Table S2). For the prokaryotic group, we
selected 9 archaeal species (15,089 nr proteins) and 24
representative bacterial species (85,592 nr proteins). From
the eukaryotic group we selected 5 Alveolata species
(81,215 nr proteins), one species of each of the following
taxa: Amoenozoa, Fornicata, Placozoa (30,171 nr proteins),
6 fungal species (57,501 nr proteins), 4 Stramenopiles spe-
cies (55,559 nr proteins) and 16 Eumetazoan species
(447,717 nr proteins). From photosynthetic eukaryotic
organisms, we selected one species of the following taxa
Bryophyta, Lycopodiophyta, Rhodophyta (62,737 nr pro-
teins), 5 Chlorophyta species (52,062 nr proteins), 5 dicot
species (200,710 nr proteins) and 4 monocot species
(177,801 nr proteins). In total, we obtained 1,266,154 nr
proteins (see Additional file 1: Table S2) with a percentage
coverage of each taxa as shown in Figure 1, which we con-
sidered -for our purposes- to be an acceptable snapshot of
the genomic diversity that was available in the public
domain at the time of downloading (May 2010).
In order to complement our study, we also downloaded
all genomes from the KEGG database (downloaded on
the 27 of May 2011; http://www.genome.jp/kegg/),
which is biased towards prokaryotic genomes, but it also
contains many eukaryotic species (see Additional file 1:
Table S3). In the second set, we analyzed 1,442 species
(97 archaeal, 1,205 bacterial and 140 eukaryotic species),
representing 6,169,140 proteins (Figure 2).

Average protein size in different species and lineages
We first analyzed the distribution of protein sizes
(sequence length in given number of amino acids (aa)
per protein). Table 1 shows statistical parameters of pro-
tein size in each of the 84 species of dataset 1. Proteins
were grouped according to phylogenetic groups and the
mean values and standard errors were visualized as bar-
plots (Figure 3). The average length of archaeal proteins
(283 aa) was the smallest, followed by the average
lengths of bacterial (320 aa) and eukaryotic (472 aa)
proteins. Plant proteins (392 aa) were intermediate in
size between bacterial (320 aa) and animal proteins (486
aa), whereas proteins from fungi (487 aa) and strameno-
piles (486 aa) were as large as the ones from the eume-
tazoa (486 aa) (Figure 3). Similar average values were
obtained from the analysis of the set 2 (data not shown).
The differences between taxonomic groups for protein
size were highly significant. The same conclusions were
obtained when considering averages, medians or other
percentile values for comparisons. This confirmed that
the statistical analysis was sufficiently robust (given the
great number of proteins analyzed) and not affected by
the skewness of the distributions.
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Protein size of functional KO categories across taxonomic
groups
Three strategies were followed in order to confirm that
average protein size was not derived from genomic arte-
facts and data outliers generated by transposons, alter-
native spliced proteins and gene family duplications: 1)
we performed mathematical modeling for decreasing the
influence of outliers (see later sections), 2) we filtered
transposon proteins and made a separate analysis of size
distribution, and 3) we grouped genes according to
functional categories and compared average sizes of dif-
ferent taxonomic groups (see below).
For strategy 2 we selected the best annotated plant

genome (Arabidopsis thaliana) as representative eukar-
yotic species. We filtered all proteins that contained par-
ticular keywords in the gene annotation (e.g. transposon,
transposase, retrovirus, etc.) and made a separate analy-
sis of protein size (data not shown). The results con-
firmed that transposon related proteins did neither
affect the distribution models nor any of the other
results (averages, medians and percentiles shown in
Table 1).
For strategy 3, the KEGG ontological categories (KO)

were assigned to proteins of dataset 2. The average pro-
tein sizes of each KO category were plotted for compar-
ing taxa (Figure 4). The size differences between

archaeal and bacterial proteins were distributed among
many but not all KO categories (Figure 4a). This means
that some KO categories of proteins were larger in bac-
terial species, but other KO categories were smaller than
archaeal proteins. On a global average, archaeal proteins
were significantly smaller than bacterial proteins, as pre-
viously shown in Table 2. This means that one of the
selective forces that shaped size differences between
prokaryotic taxa increased the number of proteins of
some KO categories (e.g. categories with large proteins).
Thus, among prokaryotes, protein size (within the same
KO category) did not increase so much through domain
addition or gene fusion (Table 1). The 90% percentile of
plant proteins is in the range of 649-877 aa, whereas in
animals it is in the range of 909-1,125 aa (Table 1).
In contrast, when comparing bacteria and fungi (as

eukaryotic representative) the size differences were pre-
sent in many KO categories (Figure 4b). Proteins of
most KO categories were larger in size in fungi than in
bacteria (Figure 4b). This can be interpreted that the
average differences of protein size (Table 2) was not an
artifact, but it has been caused by a mechanism of gene
extension, through domain addition or gene fusion.
Finally, eukaryotic taxa were also compared to each

other. Proteins belonging to the same KO category were
of variable size in different taxonomic groups, e.g. as
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Figure 1 Phylogenetic coverage of the protein dataset 1. The protein dataset 1 was constructed from the proteomes from a wide range of
Phylogenetic lineages downloaded from diverse sites on 2010 (Additional file 1: Table S1): Prokaryotes (100,681 proteins) and eukaryots (1,165,473
proteins). Around 34% belonged to plant species, 36% to animal species and the rest to other species. a) The pie reflects the percentage of protein
entries that belong to a given phylogenetic lineage. b) Number of species within phylogenetic groups of the tree of life [24].
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shown between fungi and protist (Figure 4c). This
means that the observed size differences between eukar-
yotic groups (see Table 1 and Figure 3) were caused by
both evolutionary mechanisms, by gene duplication
(increasing the number of large proteins) and by gene
fusion (altering average protein size of some selected
KO categories).

Protein number and protein average size in different
species
After detecting significant differences in protein length
among lineages (Table 1), we studied the relationship
between the average protein length and the total num-
ber of proteins coded in the genomes. In dataset 1, a
low positive correlation between the total number of
proteins and the average protein length of each species
was found (Figure 4; r = 0.25, n = 84, p = 0.024). How-
ever, this relationship arouse from the strong difference
between prokaryotic and eukaryotic species. When

species of data set 1 were analyzed as two separate king-
doms, the number of proteins per genome correlated
positively for prokaryotes (r = 0.25) but negatively for
eukaryotes (r = -0.39) (Figure 5). A similar negative cor-
relation value was found for eukaryotic species of data-
set 2 (r = -0.39, n = 140, p = 2 × 10-6) (Figure 6).

Range of average protein size differences
Plotting average protein sizes showed that the values
were quite narrowly distributed for prokaryotic species,
but it had a much larger spread in eukaryotes (Figure
4). Protein size of archaeal species were even more nar-
rowly distributed than bacterial proteins (Figure 4).
Among eukaryotic species, the spread was larger for
protists than for animals or fungi (Figure 6). Protist spe-
cies have longest or shortest protein sizes, or also the
genome with the most numerous genes (Figure 6). This
indicates that there is larger diversity of protein number
and size among unicellular protists species than among
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Figure 2 Phylogenetic coverage of the protein dataset 2. The protein dataset 2 was constructed from the full genomic sequences available
in the KEGG database downloaded on the 27 of May 2011 (www.genome.jp/kegg/). Set 2 contained 6,169,140 proteins representing 1,442
species. a) The pie reflects the percentage of protein entries that belong to a given phylogenetic lineage. b) Number of species within
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Table 1 Protein size summary.

Length aa Percentiles

Group Species Code Species Name Mean SD 10% 25% 50% 75% 90%

ARCHAEA ARC_PRO Archaeoglobus profundus DSM5631 263 187 80 128 221 346 479

ARCHAEA CAN_KOR Candidatus Korarchaeum cryptofilum OPF8 296 191 104 160 262 379 501

ARCHAEA CEN_SYM Cenarchaeum symbiosum A 308 535 74 117 213 348 521

ARCHAEA DES_KAM Desulfurococcus kamchatkensis 1221n 272 188 75 129 238 369 499

ARCHAEA MET_JAN Methanococcus jannaschii 283 204 98 149 241 365 492

ARCHAEA NAN_EQU Nanoarchaeum equitans Kin4-M 276 203 91 142 225 352 512

ARCHAEA SUL_ACI Sulfolobus acidocaldarius DSM 639 284 183 96 146 249 375 511

ARCHAEA THE_NEU Thermoproteus neutrophilus V24Sta 268 182 91 142 230 346 463

ARCHAEA THE_VOL Thermoplasma volcanium GSS1 297 198 98 157 258 390 518

BACTERIA ACI_FER Acidimicrobium ferrooxidans DSM 10331 322 203 109 174 287 415 553

BACTERIA BAC_FRA Bacteroides fragilis NCTC 9343 361 249 107 182 310 455 691

BACTERIA BAC_SUB Bacillus subtilis 168 294 266 85 145 254 382 504

BACTERIA BIF_ADO Bifidobacterium adolescentis ATCC 15703 369 233 136 218 325 461 654

BACTERIA BRA_JAP Bradyrhizobium japonicum USDA 110 317 229 107 170 277 403 552

BACTERIA BUR_CEP Burkholderia cepacia AMMD 330 250 110 180 295 410 549

BACTERIA CAM_JEJ Campylobacter jejuni RM1221 294 202 83 150 254 392 538

BACTERIA CHL_MUR Chlamydia muridarum Nigg 355 296 105 172 290 446 650

BACTERIA COR_AUR Corynebacterium aurimucosum ATCC 700975 325 225 105 177 283 417 557

BACTERIA DEI_DES Deinococcus deserti VCD115 314 209 117 169 274 395 552

BACTERIA ESC_COL Escherichia coli O157:H7 str. EC4115 287 236 58 121 239 384 548

BACTERIA GLO_VIO Gloeobacter violaceus PCC 7421 313 233 95 151 256 398 593

BACTERIA HYD_THE Hydrogenobacter thermophilus TK-6 293 198 93 149 251 389 540

BACTERIA KOC_RHI Kocuria rhizophila DC2201 337 213 118 189 300 434 578

BACTERIA LEP_BIF Leptospira biflexa Patoc 1 (Ames) 338 216 123 184 292 430 611

BACTERIA MYC_ABS Mycobacterium abscessus 317 250 115 174 273 400 524

BACTERIA PER_MAR Persephonella marina EX-H1 304 240 95 152 256 392 569

BACTERIA STA_AUR Staphylococcus aureus aureus MW2 298 285 84 149 254 385 522

BACTERIA STR_AVE Streptomyces avermitilis MA-4680 341 308 115 182 289 422 578

BACTERIA SUL_DEL Sulfurospirillum deleyianum DSM 6946 312 223 101 166 266 403 577

BACTERIA SYN_SP Synechocystis sp. PCC 6803 319 256 96 153 264 404 584

BACTERIA THE_ELO Thermosynechococcus elongatus BP-1 314 214 98 157 273 403 577

BACTERIA THE_THE Thermus thermophilus HB27 303 199 109 167 264 390 529

BACTERIA XAN_CAM Xanthomonas campestris pv armoraciae 311 258 59 134 257 412 623

APICOMPLEXA CRY_PAR Cryptosporidium parvum 597 628 155 251 433 729 1192

APICOMPLEXA PLA_FAL Plasmodium falciparum 753 866 145 253 453 930 1707

APICOMPLEXA TOX_GON Toxoplasma gondii 682 766 139 224 441 843 1486

CILIOPHORA PAR_TET Paramecium tetraurelia 457 438 127 205 348 541 854

CILIOPHORA TET_THE Tetrahymena thermophila 649 660 110 229 456 839 1396

AMOEBOZOA DIC_DIS Dictyostelium discoideum 533 513 92 198 392 702 1123

DIPLOMONADIDA GUI_LAM Giardia lamblia 543 630 84 180 369 689 1110

PLACOZOA TRI_ADH Trichoplax adhaerens 453 426 141 217 345 539 854

FUNGI_ASC PIC_STI Pichia stipitis 492 346 161 263 416 613 893

FUNGI_ASC SAC_CER Saccharomyces cerevisiae 497 382 137 239 409 632 951

FUNGI_ASC TRI_REE Trichoderma reesei 491 452 154 262 408 600 891

FUNGI_BAS LAC_BIC Laccaria bicolor 370 312 88 153 289 488 749

FUNGI_BAS PHA_CHR Phanerochaete chrysosporium strain RP78 456 327 157 246 373 556 856

FUNGI_BAS UST_MAY Ustilago maydis 613 454 176 298 501 793 1198

STRAM_DIA PHA_TRI Phaeodactylum tricornutum 462 343 162 249 381 562 841

STRAM_DIA THA_PSE Thalassiosira pseudonana 499 424 159 249 391 613 947

STRAM_OOM PHY_RAM Phytophthora ramorum 479 407 152 237 373 584 903
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all other taxa. This parallels 16SrRNA, where protists
showed the largest amount of diversity among eukar-
yotes [25].

GC content of coding DNA and average protein size in
different species
We also studied the possible relationship between pro-
tein number, size and GC content of the genomes. We
therefore measured the gene-based GC content for all
species in dataset 2 (see methods). The overall correla-
tion coefficient between average protein size and GC
content was barely significant (r = 0.05, n = 1,442; p =
0.048). When analyzed as separate kingdoms, correlation
values were non-significant in Eukaryotes (r = -0.05, n =
140; p = 0.53) and Archaea (r = 0.021; n = 101; p =

0.84) but significant in Bacteria (r = 0.21, n = 1,239; p =
9.7 × 10-14).
Correlation values between protein number and GC

content were: All species (r = 0.17, n = 1,442; p = 3.1 ×
10-11), Eukaryotes (r = -0.05, n = 140; p = 0.53), Archaea
(r = 0.44; n = 101; p = 2.7 × 10-6) and Bacteria (r = 0.58,
n = 1,239; p = 8.6 × 10-114).
These results are in accordance with the hypothesis

that protein size in eukaryotic organisms (as compared
to prokaryotes) has been under distinct selective pres-
sures during the evolution of lineages [26]. The positive
correlation found for bacterial species gives support for
the theoretical prediction that the length of ORFs
increases with the GC content of DNA due to the AT
bias of stop codons [7]. It is interesting to note that this

Table 1 Protein size summary. (Continued)

STRAM_OOM PHY_SOJ Phytophthora sojae 502 447 146 234 382 616 986

CNIDARIA NEM_VEC Nematostella vectensis 335 336 95 145 250 405 646

INSECTA ANO_GAM Anopheles gambiae 529 547 132 223 389 632 1065

INSECTA DRO_MEL Drosophila melanogaster 584 642 141 242 427 700 1164

NEMATODA CAE_ELE Caenorhabditis elegans 444 484 124 211 342 522 820

NEMATODA PRI_PAC Pristionchus pacificus 288 285 76 116 206 359 583

VERT_AVE GAL_GAL Gallus gallus 490 508 108 184 346 608 1007

VERT_AVE MEL_GAL Meleagris gallopavo 479 463 116 197 351 595 968

VERT_MAM BOS_TAU Bos taurus 495 490 145 246 356 592 947

VERT_MAM EQU_CAB Equus caballus 564 606 147 247 393 688 1139

VERT_MAM HOM_SAP Homo sapiens 456 540 98 163 311 562 947

VERT_MAM MON_DOM Monodelphis domestica 574 489 174 295 457 719 1069

VERT_MAM ORN_ANA Ornithorhynchus anatinus 445 416 123 202 327 540 868

VERT_MAM RAT_NOR Rattus norvegicus 520 500 130 224 374 643 1039

VERT_SAU ANO_CAR Anolis carolinensis 462 436 128 207 346 559 903

VERT_TEL DAN_RER Danio rerio 473 456 151 234 363 565 879

VERT_TEL TAK_RUB Takifugu rubripes 634 536 215 324 494 780 1177

PLANT_BRY PHY_PAT Physcomitrella patens 363 308 115 165 278 461 711

PLANT_CHL CHL_REI Chlamydomonas reinhardtii 503 589 97 173 335 608 1074

PLANT_CHL MIC_CCM Micromonas CCMP1545 426 390 123 202 334 522 799

PLANT_CHL MIC_RCC Micromonas RCC299 485 475 146 236 371 571 920

PLANT_CHL OST_LUC Ostreococcus lucimarinus 397 343 121 199 319 486 726

PLANT_CHL OST_TAU Ostreococcus tauri 387 349 114 186 307 476 716

PLANT_DIC ARA_THA Arabidopsis thaliana 403 299 115 202 345 513 749

PLANT_DIC CAR_PAP Carica papaya 296 249 68 112 225 411 611

PLANT_DIC GLY_MAX Glycine max 422 354 139 220 353 529 768

PLANT_DIC MED_TRU Medicagao truncatula 245 245 59 78 149 334 550

PLANT_DIC POP_TRI Populus trichocarpa 375 292 101 167 306 490 732

PLANT_LYC SEL_MOE Selaginella moellendorfii 382 300 124 191 316 481 699

PLANT_MON BRA_DIS Brachypodium distachyon 428 303 146 223 361 537 788

PLANT_MON ORY_SAT Oryza sativa ssp. japonica 448 389 108 174 332 574 960

PLANT_MON SOR_BIC Sorghum bicolor 361 282 103 167 288 476 706

PLANT_MON ZEA_MAY Zea mays 345 258 97 164 286 455 655

RHODOPHYTA CYA_MER Cyanidioschyzon merolae 504 404 158 259 412 628 918

Statistical summary of protein length values in the proteomes of dataset 1 including 84 different species (9 archeal, 24 bacterial and 51 eukaryotic organisms).
The mean, standard deviation (SD) and the 10%, 25%, 50%, 75% and 90% percentiles were calculated for each organism individually (see methods)
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correlation applied only for bacterial genomes but not
for complex organisms with large genomes. However,
other potential explanations, like selection for smaller
genes to increase the rate of duplication in genomes
under a reductive process cannot be ruled out.

Size anomalies in the protein length histograms of
different species
When protein length distributions in different species
were compared in more detail, many common features
were found (e.g. gamma type distributions), but also
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some striking differences and anomalies (Figure 7, 8).
For example, some proteomes contain several local max-
ima, i.e. peaks in the range 200-400 aa (Figure 6, 7, 8, 9).
In Arabidopsis thaliana, there was a first peak at 176 aa,
a secondary peak at 238 aa, and a third peak at 363 aa
(Figure 8). In Sorghum bicolor there were several pro-
minent peaks of sizes 51 aa, 83 aa, 191 aa, 196 aa and
254 aa (Figure 8). The presence of several local maxima
in some species could suggest that strong selective
forces are able to increase the number of proteins of
given sizes above the frequency predicted by the theore-
tical models. More functional details of those protein
peaks will be presented in a follow-up study.

Theoretical fit of protein length distributions
Finding the best fit of protein length distributions to well
characterized mathematical models can offer insights
about evolutionary trends, selective pressures and con-
straints for protein function and structure [27]. Since
protein stability is determined in part by length [28,29],
the size of proteins has a selective advantage and there-
fore, influences the evolution of proteomes in each line-
age. One could assume that proteins smaller than 130 aa
are less functional or less stable than proteins larger than
200 aa. Indeed, the need to explain the origin of large
proteins was one of the major reasons for invoking gene
or exon duplication in the starter-set hypothesis [10,30].
If size distributions can be explained by a simple

stochastic model without assuming massive gene or exon
duplication; then, the random-origin hypothesis would be
supported. If the same model applies for all species, one
could also hypothesize that protein size has increased by
the same evolutionary process that caused bacterial pro-
teins to be larger than archaeal proteins.
Therefore it is important to find the model that most

accurately describes the protein distribution in each of the
selected species. We compared the following theoretical
distributions: 1) gamma with fixed shape parameter 2)
gamma distributions with no restriction of the shape para-
meter, 3) the log-normal distribution, and 4) a distribution
resulting from the sum of two exponential random vari-
ables. For each theoretical function we estimated all the
parameters (see methods), and we obtained the Akaike’s
Information Criterion (AIC) for each fit for each species of
set 1 (Additional file 1: Table S3) and set 2 (data not
shown). For the species shown in Figure 7, 8 the model that
had the lowest (most negative) AIC value is shown in small
red letters. According to the AIC criterion the log-normal
model best fits the data for 40 out of 84 species of set 1; the
gamma model best fits the data for further 37 species and
the sum of exponential model best fits the remaining 7
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species (Additional file 1: Table S3). In set 2, the best fit
models were: log-normal (601 species), gamma free (699
species), gamma with fixed shape parameter (71 species)
and sum of exponential (71 species) (data not shown).
In order to visualize the goodness of the theoretical

fits, we plotted the models on top of the real data for a
few selected species (Figure 10). In those figures one
can easily observe that there are datasets for which the
log-normal model fits very well but there are cases that
other functions fit better (Figure 10). It can also be seen
that although the models explain the sizes very roughly,
there are many datapoints that lie outside the fitted
models (Figure 10).

The shape parameter of the gamma function
Previous attempts to model protein size distributions
had used a gamma distribution with fixed shape

parameter equal to 2 [14,18]. To examine the sound-
ness of this assumption, we modeled gamma distribu-
tions without the fixed shape parameter restriction,
and then analyzed the estimated shape parameter in all
species of dataset 1 (Additional file 1: Table S3) and
dataset 2 (data not shown). The empirical distribution
of the shape parameter for the gamma models had a
mean of 2.3 in both data sets (Additional file 1: Figure
S1). Using hypothesis testing from normal theory, we
determined that the statistical feasibly of a fixed value
of 2 is negligible (p = 7.11 × 10-9). This means that
gamma models with fixed shape parameter equal to 2
are inadequate for describing protein size distributions.
Thus, the shape parameter is not strictly 2 as earlier
assumed by [18], but it can vary between the extreme
values of 1 and 3 depending on the species (Additional
file 1: Table S3).

Chlorophyta

RhodophytaPlant_Chl

Plant_Chl Plant_Chl

Plant_ChlPlant_Chl
BestModel: LogNorm BestModel: LogNorm

BestModel: LogNorm BestModel: LogNorm

BestModel: SumExp
BestModel: Gamma

Figure 7 Protein size histograms in algae (Chlorophyta). Emprirical distribution of protein length in some representative algal genomes. The
range of protein lengths in the x-axis is from 0 to 1,500 aa. The y-axis indicates the percentage of proteins that fall into the given interval bins
of 1 aa. The letters in red indicate the theoretical model that best fits the observed distribution. Consult Table 1 for species abbreviations.
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Modeling of size distribution can detect data outliers
In order to visualize the goodness of the theoretical fits, we
plotted the models on top of the real data for a few selected
species (Figure 9). In those figures one can observe datasets
for which the log-normal model fits well but there are also
cases for which other functions (e.g. the sum of exponential
distribution) fit better (Figure 10). Although the models
explain the sizes roughly, there are some extreme data
points that lie outside the fitted curves (see size ~330 aa in
Figure 9 MON_DOM and EQU_CAB).
The fitted values of the models can be used to esti-

mate theoretical protein sizes based on the idealized
functions. For example, the theoretical median size can
be estimated with the meanlog value (μ) of the log-nor-
mal function, whereas the expected value can be calcu-
lated with the meanlog (μ) and sdlog (s) (see methods).
The same general conclusions were obtained when com-
paring the theoretical average and median values from
the fitted models (data not shown) with the previous
conclusions drawn from the arithmetic values (see Table
1 and Figure 3). Thus, the main conclusions from this
study are robust and statistically reliable and not an arti-
fact of extreme outliers or single size anomalies.

Modeling of size distribution can detect genomic
annotation artifacts
Comparison of the fitted models between different spe-
cies also allowed us to detect genomic releases that had

an aberrant distribution of protein sizes with very abun-
dant occurrence of small ORFs (see Figure 8 MED_-
TRU, CAR_PAP and POP_TRI). In those genomes,
small proteins of size < 100 aa are more abundant then
proteins of size 200 aa. As discussed below, mathemati-
cal modeling could be used as a tool for discriminating
genomic releases that have a better annotation of small
ORFs (see discussion).

Amino acid bias depending on protein length
In addition to studying the length of proteins, we also
investigated the amino acid (aa) composition in both
absolute terms (occurrence) and relative amounts (per-
centage occurrence). We asked whether protein length
has any amino acid bias (e.g. if small/large proteins have
more/less of any amino acid). Do small proteins contain
more cysteines for stabilizing their structure? Do proteins
from plant species have different properties from pro-
teins of other phylogenetic groups? In order to answer
these questions, we first calculated percentage aa compo-
sition of each protein of a species, we then calculated the
Pearson correlation coefficient r of the 20 aa to protein
length (Figure 9). The obtained r values (negative or posi-
tive) were then averaged across phylogenetic groups and
plotted horizontally with error bars (Figure 9). There
were marked differences between prokaryotic and eukar-
yotic species. For example, glycine was positively corre-
lated to protein length in prokaryotes but not in
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Figure 8 Protein size histograms in dicot and monocot plants (Viridiplantae). Empirical distribution of protein length in some
representative plant genomes. The range of protein lengths in the x-axis is from 0 to 1,500 aa. The y-axis indicates the percentage of proteins
that fall into the given interval bins of 1 aa. The letters in red indicate the theoretical model that best fits the observed distribution. Consult
Additional file 1: Table S1 for species abbreviations.
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Figure 9 Protein length amino acid bias. Correlation of percentage amino acid composition with protein length were calculated for each
species individually (see Table S4). The pearson correlation coefficients r were then averaged according to taxonomic groups. Bars indicate mean
values and standard errors across species of the same taxa. Positive or negative r values indicate the direction of the correlation (e.g. the amino
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eukaryotic proteomes (Figure 9g), whereas the opposite
was true for glumatic acid (Figure 9e). The r value was
also different for other amino acids (Figure 9). Threonine
had a high positive r value in archaea and bacteria, much
less in animal species and almost a zero or negative value
in plant species (Figure 9). Negative r values were found
for cysteine, methionine, lysine, fenilalanine, tryptophan

and tyrosine, whereas positive r values were found for
aspartate, glutamate, serine (Figure 9). Positive r values
means either that longer proteins tend to have more
from that particular amino acid or that short proteins
tend to have less from that amino acid. The opposite is
true for negative r values. For example, it seems that long
proteins have less cysteine as expected, either because it
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Figure 10 Fitting to theoretical distributions. Protein length distributions for 12 typical genomes: Archea (Archaeoglobus profundus ARC_PRO),
Bacteria (Bacillus subtilis BAC_SUB), Eumetozoa (Equus caballus EQU_CAB, Monodelphis domestica MON_DOM), Fungi (Trichoderma reesei TRI_REE,
Phanerochaete chrysosporium PHA_CHR) and Viridiplantae (Ostreococcus tauri OST_TAU, Micromonas CCMP1545 MIC_CCM, Oryza sativa ORY_SAT,
Arabidopsis thaliana ARA_THA, Zea mays ZEA_MAY, Glycine max GLY_MAX). The continuous line represents the log-normal fitted model (the
corresponding estimated parameters appear in Additional file 1: Table S3) the dots represents the relative frequency counts for the observed
data in bins of 10 aa.
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is detrimental for long proteins, or because cysteine helps
to stabilize short proteins. The lowest r values were
found for histidine and valine (Figure 9), meaning that
those amino acids have rather a neutral effect on protein
length.

Discussion
The overall goal of the study was to investigate how
similar or dissimilar are protein sequences across differ-
ent taxa of eukaryotic organisms. In this paper we
focused on average protein length, protein number and
amino acid compositional bias. We also tested the fit of
the length distributions to different theoretical models.
We determined the mathematical function that best fits
the empirical distribution of protein size in each
organism.
Protein length distribution has not been previously

understood as a selective trait per se (i.e. it is not a char-
acter that is directly selected for in classical evolutionary
terms [31]). Individuals are selected for having inherita-
ble units (e.g. genes or epigenetic states) whose products
(e.g. proteins) confer a selective advantage to their car-
riers and progeny. Protein features under direct selec-
tion could include many, like the specificity and
efficiency of a reaction when the protein is an enzyme,
or the thermo-stability of the protein, among others
[31,32]. Physicochemical restrictions must also play a
role, for example, very small proteins might not fold
properly, and the chances to evolve useful proteins are
reduced for extreme sizes. Protein size directly affects
the number of functions accessible to a polypeptide, and
it is also indirectly associated to many features that are
indeed under direct selection [31]. The actual shape of
the protein length distribution in a particular genome
has to be an interplay between mutation, recombination,
fusion, fission, deletion, selection, physicochemical
restriction and history. The challenge then becomes to
explain how these factors have contributed each, to ori-
ginate a particular distribution.

There are significant differences of average protein size
in different eukaryotic species
Previous studies on the statistical distributions of the
lengths of modern protein sequences have focused on
prokaryotic species. It was already known that archaeal
proteins are on average smaller than bacterial proteins
[4,5]. Some preliminary surveys also concluded that pro-
teins from eukaryotic species are larger than bacterial
proteins. Brocchieri and Karlin (2005) analysed five
eukaryotic species [5], whereas Zhang (2000) studied
only two eukaryotic species (Saccharomyces cerevisiae
and Caenorhabditis elegans) [4]. Since the analysis of
few species can lead to severe statistical bias due to lim-
ited sampling, we considered necessary to analyze

protein length in a much larger and diverse set of eukar-
yotic species. We constructed large protein datasets of
prokaryotic (set 1 n = 33, set 2 n = 1,302) and eukaryo-
tic species (set 1 n = 51, set 2 n = 140), including fun-
gal, animal and plant proteomes (Figure 1, 2). We then
estimated size differences among all species (Table 1)
and confirmed previous reports [4] (see above) that
eukaryotic proteins are larger on average than bacterial
and archaeal proteins (Figure 3). We show that average
protein size could be due to an altered number of pro-
teins or to an altered size of proteins within a functional
KO category (Figure 4).
Furthermore, the large variability of eukaryotic protein

length followed some phylogenetic relationships (Figure
3). Plant species had particularly small proteins among
all eukaryotes (Figure 3). Simple animal organisms like
Nematostella vectensis and Pristionchus pacificus had
protein sizes that were similar to plant species (Table 1).
We also found that unicellular eukaryotic organisms
tend to have larger average sizes than multicelular spe-
cies (Table 1). For example, the apicomplexa group has
larger proteins than the group of vertebrates, whereas
chlorophyta group has less but larger proteins than the
other groups of plants (Figure 3). In order to confirm
these observations we compared all unicellular eukar-
yotes against all multicellular species of dataset 2 and
found that the abovementioned differences were signifi-
cant for protein number (p = 9.6 × 10-12), GC content
(p = 0.0011) and protein size (p = 0.0018).

There are marked peaks but no marked gaps in the
protein length distribution curves
After observing the strong size differences among phylo-
genetic groups we analyzed the distribution curves to
see how smooth and homogenous are proteins distribu-
ted in size (Figure 7, 8). We detected protein bins of 1
amino acid (aa) that were more frequent than expected
by the theoretical models (Figure 9). Gaps in the distri-
bution curves would have indicated that there are pro-
tein sizes that are prohibited by structural or functional
reasons. For example stably functional proteins can be
formed by the very common structure of an eight-
stranded a/b barrel (TIM barrel) [33-35], but there are
no reported functional proteins that have five or nine a/
b strands [36,37], and thus one could expect gaps at
given size intervals. Since ~200 aa residues are required
to fully form a TIM barrel (each a/b strand consists of
~25 aa residues) [2], one could expect that some protein
sizes are less frequent than those which have a multiple
of 25 aa or 200 aa. However, no marked gaps or such
regularities were observed in the histograms (Figure 7,
8). This indicates that there are no prohibitive structural
constrains of protein size along the whole range of
observed sizes. Instead, marked peaks were indeed
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observed, which corresponded to data outliers in the
fitted models (Figure 9). This can be explained by mas-
sive duplication of particular genes. Most noticeably, all
mammal species had a very prominent single peak of
size ~332 aa in the distribution curves (Figure 9 MON_-
DOM and EQU_CAB). In plants, some prominent peaks
were due to multiple copies of transposon-encoded pro-
teins like the 191 aa peak in Sorghum bicolor (Figure 8).
The significant deviations from the idealized functions,

and the strong differences of the distributions among dif-
ferent organisms, indicates that protein length distribu-
tions are strongly influenced by specific selective
pressures. One of the evolutionary mechanisms is gene
duplication and subfunctionalization leading to large
gene families. An example for selective pressure for gene
duplication is the need for a large repertoire of olfactory
receptors in mammal species [32], leading to large
increase of proteins with length = 332 aa (Figure 9).

The theoretical models that best describe the distribution
of protein length are the log-normal function and the
gamma function with unrestricted shape parameter
Finding the best fit of distributions to known mathema-
tical models can offer some useful biological insights.
Protein length analyses of modern species not only
could provide clues to better explain the origin of primi-
tive proteins [14], but it can also provide valuable infor-
mation on selective pressures that have prevailed during
evolution. A good fit to a gamma function had been
previously used to sustain the hypothesis that proteins
evolved from random nucleotide sequences [18]. The
gamma function with shape parameter 2 describes a
probability density function that results from the com-
bined action of two independent random variables expo-
nentially distributed with parameters a > 0 and b > 0
respectively. A simple theory for this theoretical distri-
bution is that the occurrence of stop codons in a ran-
dom nucleotide sequence leads to exponentially
distributed protein lengths, whereas selective pressure
for protein stability, folding capacity, and potential bio-
chemical activity is dependent on sequence length, so
that small proteins (< 100 aa) have a limited potential
for a useful biological function, and thus are rather dis-
carded or negatively selected for [18].
However, the assumption of a fixed shape parameter 2

had to be rejected on statistical grounds (Additional file
1: Figure S1). The lognormal function had a better fit in
48% of the species, making it almost equivalent to the
gamma function with free shape parameter. Further-
more, the sum of exponential functions had a better fit
in only 8% of the species, particularly of recently
sequenced genomes with not so long history of curation
and manual annotation. It can be concluded from all
previous results that the theoretical model that better

describe protein size distribution is the gamma function
with unrestricted shape parameter.

Why do genomes have a protein size distribution
different from the theoretically expected?
The genetic code allows making some theoretical pre-
dictions about average protein size and frequency distri-
bution [7,8,38]. Since stop codons can appear
stochastically after any start codon, then larger proteins
should always be less frequent than smaller proteins.
The most frequent protein sizes should be 1 aa in length
[7]. However, distributions of well annotated genomes
such as Arabidopsis thaliana do not decrease monotoni-
cally but rather increase sharply at about ~80 aa, peak
several times in the range of 150-250 aa and then
decreases gradually (Figure 7, 8). In most genomes, pro-
teins of size 151-250 aa were more frequent than pro-
teins of size 51-150 aa and even more than proteins of
size 1-100 aa (Figure 7, 8). One can interpret this as evi-
dence of a selective pressure for the avoidance of pro-
teins smaller than 100 aa and the selective advantage of
functional proteins of > 250 aa. The characteristic
increase of proteins in the range 50-200 aa can be
explained with the abovementioned selection force,
whereas the monotonic decrease of frequency in the
range 500-1,000 aa can be explained by the probable
occurrence of stop codons in the coding determining
sequence (CDS).
If one considers simple models, the average protein

size should be ~21 aa [7]. If one considers more sophis-
ticated models explaining the length of random open
reading frames (ORFs) in the intergenic regions of yeast
[8], random ORFs of ~33 aa can be explained by the
mummy and baby ORF theory alone [8,39]. However,
the average eukaryotic protein is much larger than 100
aa (Table 1). We assume that the frequent occurrence
proteins of size 150-250 aa is due to protein folding sta-
bility (for example TIM barrels) that generates a selec-
tive pressures avoiding stop codons within exons or
genes. We postulate that this force is so strong in eukar-
yotic species, that it overcomes the influence of the GC
content of DNA on average ORF length as indeed found
in prokaryotic genomes.
Since most prokaryotes (archaea and bacteria) lack

introns, the fact that eukaryotic proteins are much lar-
ger can be explained because proteins usually are
encoded in multiple exons [40]. In follow up studies we
will analyze how the statistical frequency of stop codons
limits the maximal protein length in prokaryotic species
that do not have splicing mechanisms.

Limitations for the occurrence of small proteins
Why are proteins of size 150-250 aa so frequent? Why
are proteins smaller than 150 aa so infrequent in some
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genomes but not in others? Is it the result of bioinfor-
matic annotation procedures? In the yeast genome,
many ORFs < 100 aa are likely non-coding or over
annotated [41]. Some genomic annotating algorithms
are instructed to ignore small open reading frames with
a minimal cutoff of ~33 aa in order to limit the number
of false positive ORFs [42]. Some proteomes show
clearly such drastic cutoffs in the range of 20-60 aa (Fig-
ure 7, 8). Small proteins could have important biological
functions, however there is a statistical justification in
that smaller proteins are more difficult to predict than
larger ones [42]. Therefore, the definition of cut off lim-
its the number of false ORF predictions. A cutoff
increase from 21 aa to 33 aa might be supported by the
mummy and baby ORF theory [8]. Sophisticated mea-
sures of nucleotide bias at the DNA level (asymmetry in
the composition of the first and the second positions in
the codons) can help to detect spurious non-coding
ORFs in the yeast genome [41]. However, we propose
using additional bioinformatic tools at the protein level,
such as mathematical modeling and amino acid bias to
exclude false positive small ORFs rather than defining
an arbitrary cutoff of protein size. For example, from
two equally small proteins, it is more likely to be func-
tional the one that contains more %C, %M, %K, %F, %R,
%W and %Y and less %D, %E, %Q, %S and %T (Figure
9). The importance of amino acids like C is not surpris-
ing, since cisteine bridges stabilize the structure of small
proteins.

Biological functionality of small proteins
As previously mentioned, the protein length distribution
of most eukaryotic organisms is not monotonically
decreasing, but increases from 1-200 aa (see Figure 7,
8). What determines the minimal size of a biologically
active protein? Is it the function, the structure or the
capacity to be regulated? Finding a biochemical explana-
tion for a threshold of small proteins is neither simple
nor trivial. An active site of an enzyme typically consists
of only 3-5 amino acid residues correctly accommodated
in space [1]. If enzymatic catalysis can be carried out by
only so few amino acids, then the remaining residues (>
97%) of eukaryotic proteins are maybe only for accom-
modating those catalytic residues correctly in space and
for spatial filling. The smallest known enzymes are
about 10 kDa (~100 aa) in size with some extreme cases
like an enzyme of 62 aa that forms a stable homopenta-
mer (5 × 62 aa = 310 aa) [43]. Thus it seems that even
the smallest enzymes achieve stable folding and regula-
tory features only when more than 200 aa residues
interact spatially. Proteomic surveys show that the most
abundant proteins in SDS-PAGE gels of plant extracts
are in the range of 20-60 kDa (~200-600 aa) with very
few proteins appearing in the range below 10 kDa (data

not shown). Most enzymes form quaternary structures
of several polypeptides, for example the often found di-
mers or tetra-mers (http://www.expasy.org/).
From the bioinformatic survey of eukaryotic organisms

(n = 140) we conclude that the range of 150-250 aa is
the optimal length for a biologically active polypetide.
Does that represent a waste of resources? Probably not,
since a minimal size of > 200 aa might be required for
conferring regulatory properties to enzymes and pro-
teins. More work and deeper studies are needed to
address such open questions on enzymatic function and
biological capabilities of small proteins.

What limits the occurrence large proteins in plants?
We found that there are not so many long proteins in
plants (Figure 3). But, why? We found that plant pro-
teins are on average encoded by less exons than in ani-
mal genomes (data not shown). What limits a more
frequent appearance of multi-exon genes in plants in
comparison to animals? Is there any metabolic efficiency
and amino acid composition in plant proteomes? Bio-
synthetic cost-minimization of bacterial proteins has
been postulated as an explanatory hypothesis for differ-
ences in evolutionary fitness [44]. In bacteria, it has
been shown that the energetic advantage of using differ-
ent amino acids for highly expressed genes can be a
substantial proportion of the total energy budget [45]. Is
there cost-minimization of amino acid usage in plant
proteins? Or is the reason the appearance of more com-
plex proteins in animals. Plant genomes have numerous
genes, but it seems that the average plant protein is not
only smaller but it is also encoded by less exons, thus
suggesting that sequence length differences could reflect
a difference in protein multi-functionalities between
plant and animal proteins. More work is required for
the analysis and comparison of the multiplicity of
PFAM and Interpro domains in plant and animal pro-
teins in order to statistically test such hypotheses.

Is there an universal evolutionary trend towards larger
proteins?
The average length of polypeptides in archaea (~283 aa),
bacteria (~319 aa) and eukaryot (~472 aa) are signifi-
cantly different (Table 1). The progressive increase of
protein size among archaea, bacteria and eukaryotes has
been interpreted as a constant evolutionary trend for
larger proteins [4]. Did eukaryotic proteins become stea-
dily larger through domain fusion as suggested by Broc-
chieri & Karlin (2005) [5] The negative correlation
between protein number and average protein size
among eukaryotes (Figure 4, 5, 6) provides support for
the hypothesis that proteins can increase or decrease
their average size through the fusion or splitting of pro-
tein domains. However, we rule out the possibility of a
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steady trend for size increase in all organisms. Some
phylogenetic groups had larger proteins while others
had smaller proteins, and this is not related to the evo-
lutionary time of emergence of those eukaryotic
lineages. Most noticeably was the extreme variability of
protein size and protein number in protist species (Fig-
ure 6). This indicates that protein size can depend
greatly on short-term environmental adaptations.
Among eukaryotes, there was an indirect relationship

between total protein number and average protein size
(Figure 5, 6). It is therefore tempting to speculate that
proteins can fuse together, so that many small proteins
can become fewer larger proteins. This could be because
some organisms have better a adaptation when they
have less but more multifunctional proteins (larger size),
while other species are better adapted to specific envir-
onments, when they have more but less multifunctional
proteins (smaller size).
In a nutshell, compared to prokaryotic species, eukar-

yotic proteomes have been shaped by distinct evolution-
ary forces that have favored massive gene duplication
events (increase of protein number) and domain addi-
tion (increase of average protein size).

The shape of histograms and the fit to theoretical
distributions could be indicative of the efficiency of the
bioinformatic procedures for annotating small proteins
As shown in Figure 7, 8, the empirical distribution of
protein lengths for many species show the characteristic
shape of a log-normal or a gamma function. However,
there are some exceptions. For example, the protein size
distribution in Chlamydomonas reinhardtii (CHL_REI)
is monotonically decreasing from 50 aa to 250 aa (best
fit to sum of exponentials model) whereas all other
algae show a characteristic increase in that range (Figure
7). The same is true for the histogram of Medicago
trunculata (MED_TRU) and Carica papaya (CAR_PAP)
in comparison to other dicot species (Figure 8). In com-
parison, the histograms of well characterized plant gen-
omes like Arabidopsis thaliana (ARA_THA) and Zea
mays (ZEA_MAY) show a typical gamma distribution
(Figure 8). It seems therefore plausible to suggest that
the bioinformatic procedures that were used for anno-
tating small proteins in the genomes of CHL_REI and
MED_TRU were not as accurate as the procedures that
were implemented in other plant species.
Considering these preliminary observations, we would

like to speculate on the following: the most crude bioin-
formatic procedure simply detects all possible ORFs
along the six frames of the genomic DNA sequence.
This generates a protein size distribution that is mono-
tonically decreasing (Figure 11). In order to filter out
false positives, a sharp threshold is generally defined for
ORFs smaller than 21-33 aa (randomly expected mean

size). This generates a distribution that is similar as the
one observed for MED_TRU (Figure 8). As more sophis-
ticated procedures are applied for the detection of ORFs,
the size distribution changes from a sum of exponen-
tials, to a gamma or a log-normal function (Figure 11).
A well annotated proteome will then generate a typical
gamma distribution for protein size as observed for Ara-
bidopsis thaliana, Glycine max and Zea mays (Figure 8).
More work is required to optimize bioinformatic pro-

cedures for correctly discriminating ORFs of biological
active proteins and therefore filtering out false positives
and baby ORFs of small size. One strategy would be to
measure the nucleotide bias of the first and second
codon positions [41]. Another complementary strategy
would be to use the amino acid bias information in
dependence of protein length and taxonomy (Figure 9)
in order to discriminate baby ORFs from mummy ORFs
[8]. Comparing the empirical size distribution to a log-
normal or gamma function could then indicate how well
a genomic release has been annotated.
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Figure 11 Theoretical functions of protein size distribution.
One of the most notorious differences between the distribution
models is how they start from cero. The monotonic decrease
function is based on the occurrence of stop codons (3/64) along a
random DNA sequence (random ORF). In the monotonic model, an
ORF of size x is always more frequent than an ORF of size x + 1.
The log normal function starts flat and then it increases sharply and
peaks at ~200 aa. The gamma function starts steep, but then it
peaks flatter at 200 aa than the other models. The sum of
exponential function starts even steeper from cero and simulates
somehow a monotonic function with a sharp cutoff of ORFs smaller
than 33 aa (randomly expected ORFs). The model parameters to
plot the density function in R were: dlnorm(x,5.772,0.729), dgamma
(x,2.08,0.005), dsexp(x,0.01895,0.0042).
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There are some significant amino acid bias depending on
protein length and on species
It has been reported that the isoelectric point (pI) of
proteins has a bimodal distribution, with very low frac-
tions of proteins with pI close to 7.4 [46,47]. When all
proteins are analyzed together, there is no correlation
between protein size and pI values [46]. When acidic or
basic proteins were analyzed separately, the correlation
coefficient between protein size and pI was positive (r =
0.15) for the acidic set of proteins and negative (r =
-0.25) for the basic set of proteins [[45] There is also a
negative correlation between the pI bias of proteins and
the genomic GC content [46]. We therefore asked
whether protein size is correlated to the occurrence of
certain amino acids influencing the pI values.
Previous studies have reported that there is a depen-

dence of amino acid frequencies on sequence length
[29]. Using a non-redundant set of only 2,275 proteins
they found that the frequency of cysteine (C) increases
dramatically for sequences shorter than 100 amino
acids. It was also reported that arginine (R) and Lysine
(K) frequencies increase for short sequences whereas
aspartate (D) and glutamate (E) frequencies decrease
[29]. In our datasets based on over 1.2 million proteins,
we observed that the correlation of protein length with
percentage amino acid composition is variable and not
as restricted as postulated earlier [29]. Protein length
correlates negatively with %C, %M, %K, %F, %R, %W, %
Y (Figure 9). Positive correlations where detected for %
D, %E, %Q, %S and %T (Figure 9). Rather variable, small
or no significant correlations were found for %H, %I,
and %V (Figure 9). It is noteworthy to mention that pro-
tein size correlated negatively with the basic amino acids
(K and R) and positively with the acidic amino acids (D
and E). This agrees with previous reports on the bimo-
dal pI distribution, where acidic proteins are signifi-
cantly longer than basic ones [46].
There are also some strong differences among phylo-

genetic groups. In archaea and bacteria, marked differ-
ences were found for the amino acids %E, %G, %K, %M
as compared to the observed values in other eukaryotic
groups (Figure 9). The positive correlation of %G is in
accordance to the occurrence of large glycine rich pro-
teins in bacterial genomes, a feature that seems specific
for bacteria but not for eukaryotes (Figure 9. Thus, pro-
karyotic and eukaryotic proteins not only are different
in size (Table 1 and Figure 2), but have also a different
amino acid composition in dependence on protein
length (Figure 9).
Interestingly, there were also some differences

between plant groups. In monocot plants, protein length
correlated negatively with %A, %G, %P. This was not
the case in the dicot plant group. The opposite effect
was observed for other amino acids where in monocot

plants, protein length correlated positively with %F, %I,
%K, %N. The reason for this is also unknown and
should be investigated in more detail in follow-up stu-
dies. What is clear is that bacterial, animal and plant
proteins have not only different average sizes, but have
also specific biases towards different amino acids.

Conclusions
In the present study, we demonstrate that proteins of
different phylogenetic groups have different mean
lengths. Some groups of species (e.g. protists, ciliophora,
chlorophyta) have larger proteins than other groups of
species (e.g. cnidaria, nematoda, placozoa, metazoa, viri-
diplantae). We found variable relationships between pro-
tein size, protein number or genomic %GC content.
Among eukaryotes, protein number and protein size are
negatively correlated (Figure 5, 6). The theoretical
model of a gamma distribution with an unrestricted
shape parameter can be a valuable tool to study protein
evolution and to optimize automatic ORFs annotations.
Plants have usually more proteins in their genomes

than animal species, but animal proteins are on average
much larger. One possible reason for plants having
smaller proteins than most animal species could be that
plant proteins are encoded by less exons on average.
We speculate that evolutionary forces related to func-
tional domains in eukaryotic proteins explain the distri-
bution of protein size in eukaryotes, but these
hypotheses need to be tested statistically in some fol-
low-up studies.

Outlook
A comprehensive understanding of protein size across
all taxonomic groups is relevant in the context of syn-
thetic biology, which aims to construct minimal gen-
omes and organisms. In addition to finding the minimal
set of genes that are required to build a living cell (mini-
mal number of proteins), it is also important to design
synthetic proteins with minimal size (minimal aa usage)
that still perform the desired biological function. Multi-
domain proteins and multi-functional enzymes could be
attractive strategies for synthetic DNA minimization.

Methods
Protein datafiles set 1
The protein sequences of all organisms where obtained
from the NCBI and Ensemble public databases (down-
load date February 2010), unless otherwise stated. We
choose the species on following criteria: 1) full genomic
versions containing all proteins of that species 2)
sequence files publicly available. 3) focus primarily on
all available higher plants species. We also included spe-
cies from other taxonomic groups (animals, fungi, etc.)
by selecting few representatives that also matched
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previous criteria. For a general comparison between
eukaryotic and prokaryotic proteomes we therefore
included 24 bacterial and 9 archaeal species in addition
to the main 51 eukaryotic species.
The release version of the genomic sequences, the

species IDs and the download sites of the protein fasta
files are listed in Additional file 1: Table S1. In order
to create a protein database that would be reliable for
our purposes, we filtered the publicly available geno-
mic protein fasta files for the presence of identical
proteins, redundant, and thus created a database con-
taining over 1.2 million non-redundant entries. The
number of proteins in the original files (1,312,288), the
duplicated genes (46,134) and the number of proteins
finally kept for further analysis (1,266,154) are shown
in Additional file 1: Table S2 for each species
individually.

Protein datafiles set 2
Available genomes from KEGG database (27 of May
2011; http://www.genome.jp/kegg/) were downloaded,
and a database of protein sequences (in fasta format)
from these genomes was constructed, comprising ~6.1
million entries. The taxonomic classification, KEGG
code, number of proteins and gene-based G + C content
is shown for each species in Additional file 1: Table S6.

Sequence analysis and statistical procedures
In house developed perl scripts were used for sequence
handling and analysis taking advantage of some standard
BioPerl routines (http://www.bioperl.org/).
For all comparisons between samples, analysis of var-

iance (ANOVA) or Linear Modelling (LM) were done
with a threshold of p ≤ 0.01 for statistical significance.
In certain cases, we used Bonferroni type corrections for
multiple comparisons, so that highly stringent p-values
were used such as p ≤ 0.00001. Statistical analysis was
done mainly with the R program version 2.13 [48]. Ana-
lysis of variance (aov), Linear models (lm), Principal
component analysis (pca), hierarchical clustering (hclust)
and heatmap biclusters were done with R using the bio-
conductor, lattice and pcaMethods libraries with default
settings for the aov, lm, pca, histogram, hclust, dist,
pairs, heatmap and plot functions [48].

Probability density functions for calculating theoretical
protein length distribution
For describing the protein length distribution curves we
chose some probability density functions that previous
groups had chosen before: The gamma distribution [18],
the sum of two independent exponential distributions
[18] and the log-normal distribution [20,21]. For pro-
teins larger than 1,500 aa we also analyzed the sequence
length distributions using the Pareto’s function [21].

The sum of two independent exponential random variables
The density function of the sum of two independent
distributed random variables with parameters a > 0 and
b > 0 respectively is given by:

fZ(z;α,β) =
αβ

β − α
(e−αz − e−βz)I(0,∞)(z), (1)

where z is the protein length (total number of amino
acid residues).
Gamma distributions
The gamma distribution has been used to model the
protein length distributions in other works [19,20]. This
distribution can be expressed in terms of a shape para-
meter (θ) and a scale parameter (a):

fZ(z; θ ,α) =
αθ zθ−1e−αz

�(θ)
I(0,∞)(z) (2)

If a = b, then (1) reduces to:

fZ(z;α) = α2ze−αzI(0,∞)(z) (3)

One can obtain the same result by setting θ = 2 in (2),
so it follows that the probability density function given
in (3) corresponds to that of a Gamma random variable
with scale parameter a and fixed shape parameter 2.
The estimators of the parameters can be obtained easily
using the maximum likelihood method with the
moment’s estimators as initial values.
Log normal distribution
The log-normal distribution can be expressed in terms
of the parameters μ and s:

fZ(z;μ, σ ) =
1√
2πσ z

e
−
(log z − μ)2

2σ 2 I(0,∞)(z)
(4)

This distribution can be used to approximate the fre-
quency distributions of gamma distributed random vari-
ables since both distributions have the same support
and similar asymmetries [49].
The log-normal function can be used to estimate

expected values and the median as follows:

E(Z) = eμ+σ 2/2

Me(Z) = eμ

Pareto’s Distribution
The Pareto’s distribution is a power law probability dis-
tribution often used in social sciences and economics.
This model has been used previously to describe the fre-
quency distributions of protein lengths for the last few
percentiles [21].
The Pareto’s distribution can be expressed in terms of

two parameters: zm (scale) and a (shape):
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fZ(z; zm,α) =
αzαm
zα+1

I(zm,∞)(z), (5)

the corresponding distribution function is given by:

P(Z ≤ z) = 1 − zαm
zα+1

(6)

so P(Z > z) =
zαm
zα+1

, then taking natural logarithms in

both sides leads to a linear model in z, log(P(Z >z)) =
azm - (a + 1)log z. That means that under the null
hypotheses the data comes from a Pareto’s distribution,
if one plots log(P(Z >z)) vs log Z the corresponding
scatter plot must look like a straight line.
In the case of the Pareto’s distribution the closed

expressions for the parameter estimates are given by:

ẑm = min
1≤i≤n

{zi}, α̂ =
n

n∑
i=1

log(zi − log ẑm)
.

We applied the Chi-squared test to whether the data
comes from the Pareto’s distribution for each data set.
Model fitting
The statistical models described previously were fitted
by using the well known maximum likelihood method
for each species with the observed data in the range 0
<z < 1,500. In the case of the gamma and log normal
distributions we used the fitdistr function in the MASS
package [50] in R [48]. For the gamma distribution with
fixed shape parameter and the distribution of the sum
of two exponential distributions we used the optim
function (also available in R) to maximize the likelihood
function and obtain the estimates of the parameters of
interest. The scripts used to fit all the models are avail-
able upon request.
Discriminating between models
The problem of choosing between rival models that are
non-nested in terms of their functional forms has been
studied by several authors [51]. Here we adopted the
well known Akaike’s information criterion (AIC) [52],
given by:

AIC = 2k − 2 log(L) (7)

where k is the number of parameters estimated in the
model, and log(L) is the value of the log-likelihood func-
tion for the estimated parameters. For a given data set,
several models can be fitted; according to the AIC cri-
terion the model with smallest AIC is the best (more
negative AIC value).
Testing whether the gamma type function has a fixed
shape parameter equal to 2 or not
From the Large Sample Theory, it is well known that the
maximum likelihood estimators are asymptotically

normally distributed (e. g. Lehman, 1998, pag. 463, Theo-
rem 5.1). Using this fact in the case of the gamma distribu-

tion for the shape parameter,
√
n(θ̂ − θ)

d−→ N(0, I−1
θ )

where θ̂ denotes the maximum likelihood estimator of
θ and I-1θ denotes the entry corresponding to θ in the
inverse of the Fisher information matrix. In the case of
the protein length distributions for the 84 species it

can be assumed that θ̂j ∼ N(θ , σ 2
j ), j = 1, ..., 84 .

Furthermore assuming that θ̂1, . . . , θ̂84are independent
random variables, then using the normal theory,

¯̂
θ =

1
84

84∑
j=1

θ̂j ∼ N

⎛
⎝θ ,

1
84

84∑
j=1

σ 2
j

⎞
⎠ , the estimators of

σ 2
j can be obtained using the observed Fisher informa-

tion matrix. Using this result one can easily test the
following hypothesis set:

H0 : θ = 2 vs H1 : θ �= 2

That is we want to know if the value hypothesized by
White (1994) for the shape parameter 2 is feasible or not.
This hypothesis can be easily tested using the abovemen-
tioned assumptions from the normal theory. If the
obtained p-value is low enough, then the null hypothesis
needs to be rejected, and that means that the gamma
model with fixed shape parameter equal to 2 is inadequate.

Additional material

Additional file 1: Suplemental tables and figures. Table S1. Genomic
download sites List of selected species, the respective genomic version
and sites of download sites. File downloads were done between
November 2009 and June 2010. Table S2. Total number of proteins
Number of proteins used for statistical analysis. The publicly available
protein fasta files were first formatted and filtered. Identical duplicates
were discarded in order to keep a non-redundant protein set for each
species. Table S3. Fitting parameters. Estimated parameters and AIC for
the Gamma, lognormal and exponential sums for protein length
distributions. Table S3. continued. Table S4. Protein length amino acid
bias. The pearson correlation coefficients R of percentage amino acid
composition with protein length were calculated for each species
individually. Positive or negative R values indicate the direction of the
correlation. Table S5. Parameter estimates for the Pareto’s model and
Chi-squared goodness of fit. Table S6. Taxonomic classification, KEGG
code, species name, number of proteins and gene-based G+C content
for each species of dataset 2. Figure S1. Histogram of the shape
parameter in the modelled gamma functions. The distribution of the
shape parameter values obtained in the modelled gamma functions.
Figure S2. Dendogram of protein size attributes. Dendogram of protein
size attributes in different species. Data from table 1 was used to
construct a distance matrix for hierarchical clustering. Euclidean distances
were calculated and then full hierarchical clustering was plotted with
default parameters of the R function hclust(dist(data)). Figure S3. Pareto’s
best fit of the right handed distribution tail. Pareto’s best fit for
Arabidopsis thaliana.

Tiessen et al. BMC Research Notes 2012, 5:85
http://www.biomedcentral.com/1756-0500/5/85

Page 20 of 22

http://www.biomedcentral.com/content/supplementary/1756-0500-5-85-S1.DOC


Acknowledgements
We thank Andres Christen for critical reading of earlier versions of the
manuscript and helpful mathematical advice. We also thank Cei Abreu-
Goodger and Ruairidh Sawers for their helpful suggestions on the
manuscript. We greatly thank Diego Riaño for providing perl scripts,
obtaining the data set 1, and for his useful suggestions and critical
comments. We thank also Luis David Alcaraz for bioinformatic advice and
for providing some of the perl scripts we used in the preliminary proteomic
surveys. This work was partially supported by grants from the Consejo
Nacional de Ciencia y Tecnología (CONACYT México) to AT. PPR was partially
funded by Subdirección de Investigación: Línea 15, Colegio de
Postgraduados, México. We thank the Max Planck Institute of Molecular Plant
Physiology in Potsdam, Germany for providing access to compute clusters
for sequence analyses.

Author details
1Departamento de Ingeniería Genética, CINVESTAV Irapuato, Irapuato, CP
36821, Mexico. 2Colegio de Posgraduados, Texcoco, Mexico.

Authors’ contributions
AT conceived of the study, coordinated the project, participated in the
statistical analysis, prepared most figures, contributed to the statistical and
biological interpretation of the results and wrote the manuscript. PPR
performed statistical analysis, wrote the R scripts, carried out the model
fittings and prepared some figures and tables. LDA obtained the sequence
files of set 2, wrote the perl scripts for sequence analysis, and contributed to
the statistical and biological interpretation of the data. All authors wrote and
edited selected parts of the manuscript. They all revised and approved the
final version.

Competing interests
The authors declare that they have no competing interests.

Received: 20 May 2011 Accepted: 1 February 2012
Published: 1 February 2012

References
1. Nelson DL, Cox MM: Lehninger. Principles of Biochemistry.Edited by:

Freeman WH , 4 2004.
2. Chothia C, Finkelstein AV: The Classification and Origins of Protein

Folding Patterns. Annu Rev Biochem 1990, 59:1007-1039.
3. Petsko GA, Ringe D: Protein Structure and Function. New Science Press,

Ltd; 2003, 111.
4. Zhang JZ: Protein-length distributions for the three domains of life.

Trends Genet 2000, 16(3):107-109.
5. Brocchieri L, Karlin S: Protein length in eukaryotic and prokaryotic

proteomes. Nucleic Acids Res 2005, 33(10):3390-3400.
6. Jukes TH, Holmquist R, Moise H: Amino-Acid Composition of Proteins-

Selection against Genetic Code. Science 1975, 189(4196):50-51.
7. Oliver JL, Marin A: A relationship between GC content and coding-

sequence length. J Mol Evol 1996, 43(3):216-223.
8. Gierlik A, Mackiewicz P, Kowalczuk M, Cebrat S, Dudek MR: Some hints on

open reading frame statistics-How ORF length depends on selection. Int
J Mod Phys C 1999, 10(4):635-643.

9. Eck RV, Dayhoff MO: Evolution of Structure of Ferredoxin Based on Living
Relics of Primitive Amino Acid Sequences. Science 1966, 152(3720):363, &.

10. McLachlan A: Repeating sequences and gene duplication in proteins.
J Mol Biol 1972, 64:417-437.

11. Darnell J: Implications of RNA-RNA splicing in evolution of eukaryotic
cells. Science 1978, 202:1257-1260.

12. Dorit RL, Gilbert W: The limited universe of exons. Cur Opinion Struc Biol
1991, 1:973-977.

13. Dorit R, Schoenbach L, Gilbert W: How big is the universe of exons?
Science 1990, 250:1377-1382.

14. White SH, Jacobs RE: The evolution of proteins from random amino-acid-
sequences. 1. Evidence from the lengthwise distribution of amino-acids
in modern protein sequences. J Mol Evol 1993, 36(1):79-95.

15. White SH, Jacobs RE: Statistical distribution of hydrophobic residues
along the length of protein chains-implications for protein folding and
evolution. Biophys J 1990, 57(4):911-921.

16. Lau KF, Dill KA: Theory for protein mutability and biogenesis. P Natl Acad
Sci USA 1990, 87(2):638-642.

17. Shakhnovich EI, Gutin AM: Implications of thermodynamics of protein
folding for evolution of primary sequences. Nature 1990,
346(6286):773-775.

18. White SH: The Evolution of proteins from random amino-acid-sequences.
2. Evidence from the statistical distributions of the lengths of modern
protein sequences. J Mol Evol 1994, 38(4):383-394.

19. Nei M, Chakraborty R, Fuerst P: Infinite allele model with varying mutation
rate. P Natl Acad Sci USA 1976, 73:4164-4168.

20. Sommer S, Cohen J: The size distributions of proteins, mRNA, and
nuclear RNA. J Mol Evol 1980, 15:37-57.

21. Jain R, Ramakumar S: Stochastic dynamics modeling of the protein
sequence length distribution in genomes: implications for microbial
evolution. Physica A 1999, 273(3-4):476-485.

22. Ross SM: Introduction to Probability models. San Diego: Academic press, 4
1989.

23. Holmquist R, Moise H: compositional nonrandomness-quantitatively
conserved evolutionary invariant. J Mol Evol 1975, 6(1):1-14.

24. Eukaryota, Organisms with nucleated cells. The Tree of Life Web Project,
Version 28. [http://tolweb.org/Eukaryotes/3/2009.10.28].

25. Schlegela M: Molecular phylogeny of eukaryotes. Trends in Ecology &
Evolution 1994, 9(9):330-335.

26. Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J: On the origin
and highly likely completeness of single-domain protein structures. P
Natl Acad Sci USA 2006, 103(8):2605-2610.

27. Denton MJ, Marshall CJ, Legge M: The protein folds as platonic forms:
New support for the pre-Darwinian conception of evolution by natural
law. J Theor Biol 2002, 219(3):325-342.

28. Dill KA: The theory of the folding and stability of globular proteins.
Biochemistry 1985, 24:1501-1509.

29. White SH: The amino acid preferences of small proteins: implications for
protein stability and evolution. J Mol Biol 1992, 227(4):991-995.

30. Blake C: Exons-Present from the Beginning. Nature 1983,
306(5943):535-537.

31. Mayr E: The objects of selection. P Natl Acad Sci USA 1994, 94:2091-2094.
32. Gimelbrant AA, Skaletsky H, Chess A: Selective pressures on the olfactory

receptor repertoire since the human-chimpanzee divergence. P Natl
Acad Sci USA 2004, 101(24):9019-9022.

33. Aravind L, Iyer LM, Koonin EV: Comparative genomics and structural
biology of the molecular innovations of eukaryotes. Curr Opin Struc Biol
2006, 16(3):409-419.

34. Chandonia JM, Kim SH: Structural proteomics of minimal organisms:
Conservation of protein fold usage and evolutionary implications. BMC
Structural Biology 2006, 6:7.

35. Kolodny R, Petrey D, Honig B: Protein structure comparison: implications
for the nature of ‘fold space’, and structure and function prediction. Curr
Opin Struc Biol 2006, 16(3):393-398.

36. Murzin AG: New-Protein Folds. Curr Opin Struc Biol 1994, 4(3):441-449.
37. Yeates TO: Protein structure: evolutionary bridges to new folds. Curr Biol

2007, 17(2):R48-R50.
38. Jukes TH, Holmquist R, Moise H: Average proteins and genetic code.

Science 1976, 194(4265):642-643.
39. Cebrat S, Dudek MR: Generation of overlapping open reading frames.

Trends Genet 1996, 12(1):12-12.
40. Naora H, Deacon NJ: Relationship between the total size of exons and

introns in protein-coding genes of higher eukaryotes. P Natl Acad Sci-Biol
1982, 79(20):6196-6200.

41. Mackiewicz P, Kowalczuk M, Mackiewicz D, Nowicka A, Dudkiewicz M,
Laszkiewicz A, Dudek MR, Cebrat S: How many protein-coding genes are
there in the Saccharomyces cerevisiae genome? Yeast 2002, 19:619-629.

42. Warren AS, Archuleta J, Feng WC, Setubal JC: Missing genes in the
annotation of prokaryotic genomes. BMC Bioinformatics 2010, 11:131.

43. Chen LH, Kenyon GL, Curtin F, Harayama S, Bembenek ME, Hajipour G,
Whitman CP: 4-oxalocrotonate tautomerase, an enzyme composed of 62
amino-acid-residues per monomer. J Biol Chem 1992,
267(25):17716-17721.

44. Seligmann H: Cost-minimization of amino acid usage. J Mol Evol 2003,
56(2):151-161.

Tiessen et al. BMC Research Notes 2012, 5:85
http://www.biomedcentral.com/1756-0500/5/85

Page 21 of 22

http://www.ncbi.nlm.nih.gov/pubmed/2197975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2197975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10689349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/237322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/237322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8703087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8703087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17775169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17775169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5023183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/364651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/364651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2255907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8433379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8433379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8433379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2188687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2188687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2188687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2388698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2388698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8007006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8007006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8007006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6154144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6154144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1185793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1185793?dopt=Abstract
http://tolweb.org/Eukaryotes/3/2009.10.28
http://www.ncbi.nlm.nih.gov/pubmed/22282460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12419661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12419661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12419661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3986190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1433304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1433304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6646232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16566839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16566839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17240325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/982033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8741854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20230630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20230630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1339435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1339435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12574861?dopt=Abstract


45. Akashi H, Gojobori T: Metabolic efficiency and amino acid composition in
the proteomes of escherichia coli and bacillus subtilis. P Natl Acad Sci
USA 2002, 99(6):3695-3700.

46. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N,
Smolarczyk K, Dudek MR, Cebrat S: The relationships between the
isoelectric point and: length of proteins, taxonomy and ecology of
organisms. BMC Genomics 2007, 8:8.

47. Nandi S, Mehra N, Lynn AM, Bhattacharya A: Comparison of theoretical
proteomes: Identification of COGs with conserved and variable pI within
the multimodal pI distribution. BMC Genomics 2005, 6:116.

48. R Development Core Team: R: A language and environment for statistical
computing. Vienna, Austria; 2011.

49. White JV, Stultz CM, Smith TF: protein classification by stochastic
modeling and optimal filtering of amino-acid-sequences. Math Biosci
1994, 119(1):35-75.

50. Venables WN, Ripley BD: Modern applied statistics with S. New York:
Springer; 2002.

51. Lewis F, Butler A, Gilbert L: A unified approach to model selection using
the likelihood ratio test. Methods in Ecology and Evolution 2010, 2041-2210.

52. Akaike H: A new look at the statistical model identification. IEEE
Transactions on Automatic Control 1974, 19(6):716-723.

doi:10.1186/1756-0500-5-85
Cite this article as: Tiessen et al.: Mathematical modeling and
comparison of protein size distribution in different plant, animal, fungal
and microbial species reveals a negative correlation between protein
size and protein number, thus providing insight into the evolution of
proteomes. BMC Research Notes 2012 5:85.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Tiessen et al. BMC Research Notes 2012, 5:85
http://www.biomedcentral.com/1756-0500/5/85

Page 22 of 22

http://www.ncbi.nlm.nih.gov/pubmed/17210083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17210083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17210083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16150155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16150155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16150155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8111135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8111135?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Construction and curation of protein datasets
	Average protein size in different species and lineages
	Protein size of functional KO categories across taxonomic groups
	Protein number and protein average size in different species
	Range of average protein size differences
	GC content of coding DNA and average protein size in different species
	Size anomalies in the protein length histograms of different species
	Theoretical fit of protein length distributions
	The shape parameter of the gamma function
	Modeling of size distribution can detect data outliers
	Modeling of size distribution can detect genomic annotation artifacts
	Amino acid bias depending on protein length

	Discussion
	There are significant differences of average protein size in different eukaryotic species
	There are marked peaks but no marked gaps in the protein length distribution curves
	The theoretical models that best describe the distribution of protein length are the log-normal function and the gamma function with unrestricted shape parameter
	Why do genomes have a protein size distribution different from the theoretically expected?
	Limitations for the occurrence of small proteins
	Biological functionality of small proteins
	What limits the occurrence large proteins in plants?
	Is there an universal evolutionary trend towards larger proteins?
	The shape of histograms and the fit to theoretical distributions could be indicative of the efficiency of the bioinformatic procedures for annotating small proteins
	There are some significant amino acid bias depending on protein length and on species

	Conclusions
	Outlook

	Methods
	Protein datafiles set 1
	Protein datafiles set 2
	Sequence analysis and statistical procedures
	Probability density functions for calculating theoretical protein length distribution
	The sum of two independent exponential random variables
	Gamma distributions
	Log normal distribution
	Pareto’s Distribution
	Model fitting
	Discriminating between models
	Testing whether the gamma type function has a fixed shape parameter equal to 2 or not


	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

