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Abstract

Background: We recently published in BMC Systems Biology an approach for calculating the perturbation
amplitudes of causal network models by integrating gene differential expression data. This approach relies on the
process of score aggregation, which combines the perturbations at the level of the individual network nodes into a
global measure that quantifies the perturbation of the network as a whole. Such “bottom-up” aggregation relates
the changes in molecular entities measured by omics technologies to systems-level phenotypes. However, the
aggregation method we used is limited to a specific class of causal network models called “causally consistent”,
which is equivalent to the notion of balance of a signed graph used in graph theory. As a consequence of this
limitation, our aggregation method cannot be used in the many relevant cases involving “causally inconsistent”
network models such as those containing negative feedbacks.

Findings: In this note, we propose an algorithm called “sampling of spanning trees” (SST) that extends our
published aggregation method to causally inconsistent network models by replacing the signed relationships
between the network nodes by an appropriate continuous measure. The SST algorithm is based on spanning trees,
which are a particular class of subgraphs used in graph theory, and on a sampling procedure leveraging the
properties of specific random walks on the graph. This algorithm is applied to several cases of biological interest.

Conclusions: The SST algorithm provides a practical means of aggregating nodal values over causally inconsistent
network models based on solid mathematical foundations. We showed its utility in systems biology, where the
nodal values can be perturbation amplitudes of protein activities or gene differential expressions, while the
networks can be models of cellular signaling or expression regulation. Since the SST algorithm is based on general
graph-theoretical considerations, it is scalable to arbitrary graph sizes and can potentially be used for performing
quantitative analyses in any context involving signed graphs.
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Background
Recently, we developed an approach aimed at assessing
network perturbation amplitudes (NPA) by integrating
gene differential expression measured by transcriptomics
with causal biological network models built from prior
literature-derived knowledge [1]. Like other methods,
our computational approach relies on the aggregation of
scores defined on the network nodes [2]. This need for
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aggregating nodal values is essential for “bottom-up”
reasoning in molecular systems biology and appeared
mainly as the consequence of two factors. First, the
advances in experimental omics expression profiling
technologies have enabled the quantification of the
behavior of thousands of molecular entities contained in
the system, such as the more than 20,000 mRNA
transcripts. Second, accumulated evidence shows that the
biological processes underlying system-level functions are
best understood in terms of the interactions between the
individual molecular entities within pathways or networks
[3]. This evidence has motivated large-scale mining of the
relationships between the molecular entities reported in
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the literature to assemble knowledge-based pathways and
networks [4]. Such assemblies enable the study of
cell-, tissue-, or organ-level phenomena under “bottom-
up” perspectives, such as the response to exposure to
biologically active substances relevant to pharmacology
and toxicology [5], which was one of the motivations
for the present study. Additional details about the
systems biology concepts used in this note are given
in the Appendix.
The aggregation method involved in our NPA calcula-

tions uses the edges connecting nodes in a causal
biological network model to combine the real-valued
nodal scores. While the NPA assessment framework
provides specific values for the nodal scores (see the
Appendix for more details), the aggregation method in
itself is applicable to any means of assigning real-valued
scores or measurements to the nodes of a causal network
model. It is designed to be in accordance with the
information contained in a causal network model,
which includes in particular signed relationships for every
edge: +1 = A → B = “increase (decrease) in node A causes
increase (decrease) in node B”, and −1 = A—|B =
“increase (decrease) in node causes decrease (increase) in
node B”. Our aggregation method works for the major
class of network models termed “causally consistent”,
where the relative sign in {−1,+1} between any node pair
{A,B} of the network can be unambiguously determined
using the product of the edge signs along any path relating
nodes A and B. However, it cannot be applied to “causally
inconsistent” network models, where the relative sign
in {−1,+1} between some node pairs {A,B} of the
network cannot be unambiguously determined and
depends on the specific paths relating nodes A and
B. This limitation prevents the NPA approach from
being applied to richer causal network models and
thereby cover further relevant biological processes
such as the cell cycle [6].
To concretely illustrate how the causal inconsistency

affects the possibility of aggregating real-valued score
over a causal network model, we consider the incoherent
feed-forward loop (IFFL) network motif shown in Figure 1A
[7], which constitutes a simple but relevant case of a
causally inconsistent network. The aggregation method
used in the context of NPA calculations consists of
summing the real-valued contributions of each node of the
network, adjusted by their signs in {−1,+1} relative to one
specific node called the “reference node” (see the Appendix
for more details). The sign of a given node relative to the
reference node is determined by the product of the edge
signs along any (non-oriented) path relating that node and
the reference node [1]. As mentioned above, such an
approach is only possible when the network is causally
consistent, that is when the relative sign in {−1,+1} between
any node pair {A,B} can be unambiguously determined
because it does not depend on the specific paths relating
nodes A and B. In the case of the causally inconsist-
ent IFFL shown in Figure 1A, we observe that the
two (non-oriented) paths “A → B” and “A → C |— B ”
relating nodes A and B do not have the same sign, as
obtained by the product of the signs of their edges. If node
A is the reference node, then the relative sign of node
A with respect to the reference node cannot be
unambiguously determined. The same holds for the
node pair (A, C) and the corresponding paths “A →
C” and “A → B —| C”. These observations concretely
exemplify the impossibility of performing the aggregation
method necessary for NPA calculations when considering
causally inconsistent network models.
A closer look into the aggregation methods used in the

similar context of pathway analysis for the interpretation
of differentially expressed genes revealed that none of the
existing approaches were suitable for our task [2]. The
main reason for this inadequacy is illustrated in the case
of the “Signaling Pathway Impact Analysis” (SPIA)
approach [8]: the information about pathway structure is
used for node-level scoring and not for pathway-level
aggregation, which is then not necessarily performed
in full accordance with the pathway structure. The
“shortest-path” approach constitutes another direction
that was recently used to deal with causally inconsistent
biological networks [9]. However, it is not satisfactory
from the biological point-of-view, because a potentially
relevant part of the biological information contained the
network model is disregarded, as it can be clearly seen in
the IFFL case. As a consequence, a novel approach is
required for our task of aggregating real-valued scores
over causally inconsistent networks.
In this note, we propose a novel algorithm called

“sampling spanning trees” (SST) that extends our
aggregation method to the class of “causally inconsistent”
network models. This extension enables the NPA
approach to be applied to richer causal network
models and thereby cover further relevant biological
processes such as the cell cycle [6]. In the “Findings”
section, we present the mathematical concepts and
properties underlying the SST algorithm, such as the
notion of unbalanced graphs, which corresponds to
causally inconsistent networks (see the Appendix for
more details). We then show its application to several
concrete cases, including the IFFL network motif and
the calculations of perturbation amplitudes for causally
inconsistent network models [6,10-12]. We also explain
the implementation of the SST algorithm in the case
of these network models encoded in the Biological
Expression Language (BEL) [13]. These considerations
are accompanied by a comparison of the SST results
with results obtained on quasi-equivalent causally
consistent networks for which the SST algorithm was
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Figure 1 Causally inconsistent biological networks, spanning trees, and results of the SST algorithm. (A) The incoherent feed-forward loop
(IFFL) as an example of a causally inconsistent network, termed an “unbalanced graph” in graph theory. (B) The three spanning trees corresponding to the
IFFL shown in (A). (C) Magnification of neighborhood of the TXNIP feedback loop from the “Hypoxic Stress” network. The effective node weights Sn→ REF

from SST are indicated in the boxes, and the red X indicates the edge that is absent in the pruned causally consistent version of the network. (D) Receiver
operating characteristic (ROC) curve (true positive rate vs. false positive rate) for the comparisons between the effective node weights Sn→ REF from SST and
the corresponding nodal signs sn→ REF for the 19 networks given in Additional file 1: Table S1. The color of the curve follows the prediction threshold
applied on Sn→ REF and shows that mislabeling occurs mainly for small values around zero (i.e. the green part of the curve). The area under the ROC curve
(AUROC) is 0.992.
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not necessary. The very good agreement between the
two approaches confirms the appropriateness of our
implementation. Overall, we find that the aggregation of
nodal scores using the SST algorithm is mathematically
solid and that its application to BEL-encoded causal
network models is biologically sound. The SST algorithm
can be applied to arbitrary-sized networks, and has
potential utility beyond the case of causal network
models used in systems biology, namely any situation where
global quantities need to be calculated by aggregating the
nodal values of an unbalanced graph consistently with the
signs of its edges.
Findings
Overview
In this note, we propose a novel approach for unambigu-
ously determining signed relationships between the
nodes of a causally inconsistent network, which enables
the application of the aggregation method used in our
previous study [1]. This approach consists of replacing
the “rigid” signs in {−1,+1} between the reference node
and any other node by a “relaxed” continuous measure
in [−1,+1] that characterizes relationships across the
network (see the section “The SST algorithm” below).
The value of this measure is calculated by averaging over
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a representative sample of spanning trees [14], which are
suitably extracted from the causally inconsistent network,
hence the algorithm name SST. Spanning trees represent
meaningful quantities in the present context, because they
constitute well-defined mathematical objects for encoding
all the unambiguous pairwise relationships in {−1,+1}
existing in a causally consistent network model. From that
perspective, a causally inconsistent network model can be
viewed as an “excessively rich” causal network model
for which not all pairwise nodal relationships can be
unambiguously determined, preventing the original
aggregation method to be applied. However, by averaging
over a representative sample of causally consistent
spanning trees extracted from it, we ensure that the
biological information used during the SST-based
aggregation method is maximal and in full accordance
with the network structure, so that the biological content
of the network remains globally conserved.

The SST algorithm
Given a connected balanced signed graph G = (Nodes,
Edges) and a real-valued quantity Xn defined on the
nodes of G (e.g., perturbation amplitude score [1] or
gene differential expression [8]), we define the aggregation
of Xn over G as

XG ¼
X

n∈Nodes

sn→REF Gð Þ⋅Xn ; ð1Þ

where sn→ REF(G) ∈ {−1, 1} is the nodal sign given by the
product of the edge signs over any path in G relating node
n and the reference node REF. Since G is a balanced
graph, sn→ REF(G) is independent of the chosen path and
is therefore defined unambiguously for all nodes n.
The SST algorithm is based on the concept of spanning

trees: t is a spanning tree of G if t is a subgraph of G
that is a tree and that connects all nodes of G [14]. The
usefulness of spanning trees comes from the fact that the
aggregated quantity XG defined in Eq. (1) can be equally
rewritten in terms of any spanning tree t of G as

XG ¼ X tð Þ ¼
X

n∈Nodes

sn→REF tð Þ⋅Xn ; ð2Þ

where sn→REF(t) ∈ {−1, 1} is now calculated over the only
path in t ⊂G between node n and the reference node REF.
Supposing that all the N(G) spanning trees t1,…, tN(G) of G
can be enumerated, XG can be equivalently rewritten as

XG ¼ 1
N Gð Þ

X

t¼t1;…; tN Gð Þ

X tð Þ

¼ 1
N Gð Þ

X

t¼t1;…; tN Gð Þ

X

n∈Nodes

sn→REF tð Þ⋅Xn ; ð3Þ

The key point of the SST algorithm is to realize that
Eq. (3) is well-defined, even if G is an unbalanced graph.
This property results from the fact that the enumeration
of the spanning trees is independent of the edge signs
(i.e. “→” or “—|”) and from the fact that sn→ REF(t) is
unambiguously defined for a given spanning tree t.
Swapping the summations over spanning trees t and
nodes n in Eq. (3) yields the final expression

XG ¼
X

n∈Nodes

Sn→REF Gð Þ⋅Xn ; ð4Þ

where

Sn→REF Gð Þ ¼ 1
N Gð Þ

X

t¼t1… tN Gð Þ

sn→REF tð Þ ð5Þ

Eq. (4) extends the initial definition of XG, which is
valid for balanced graphs only. It replaces the nodal sign
sn→ REF(G) ∈ {−1, + 1} by the nodal effective weights
Sn→ REF(G) ∈ [−1, + 1] in the case of unbalanced graphs,
representing a “structural average” over all possible
spanning trees for which a well-defined aggregation of
Xn over G can be calculated. The nodal effective weights
Sn→ REF(G) also generalize beyond the specific aggrega-
tion method here (Eq. (1)), and represent a generally
applicable “structurally averaged” signed relationship
between two nodes (n and REF) in an unbalanced
graph.
In practice, explicit enumeration of all the spanning trees

is unrealistic for large unbalanced graphs. The second key
element of the SSTalgorithm consists therefore in replacing
the exhaustive sum over all spanning trees t1,…, tN(G) in
Eq. (5) by an approximation involving a computable
representative subset of spanning trees T(G). We
employed Aldous’ method that generates a suitable
uniform sample of spanning trees using random walks
over the graph [15]. This method consists of moving
“signed” walkers along the graph, whose trajectory and
sign in {−1,+1} are determined by the following set of local
rules (assuming that G is connected):

1. Each walker starts at the reference node REF, with
positive sign “+1”.

2. The walker randomly chooses an edge connected to
the current node to traverse. The edge choice is
irrespective of the sign or direction of the edge.

3. The walker’s sign is preserved if it traverses a
positively signed edge (+1 = “→”) and is flipped if it
traverses a negatively signed edge (−1 = “—|”).

4. If the next node has not already been visited by that
walker, the walker marks the next node as visited
and the walker’s sign is assigned to that node.

5. If the next node has already been visited by that
walker, then the walker adopts the sign from the
node.

6. Continue until all nodes of the graph are visited.
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In the framework of Aldous’ method explained above,
Eq. (5) can be replaced by

Sn→REF Gð Þ≈ Nþ n;Gð Þ−N− n;Gð Þ
Nþ n;Gð Þ þ N− n;Gð Þ ; ð6Þ

where N±(n,G) and N−(n,G) record the number of
random walkers visiting node n with positive and nega-
tive sign, respectively. N+(n,G) +N−(n,G) is the total
number of sampled spanning trees in T(G), which is
chosen to ensure convergence of the Sn→ REF(G) approx-
imations. Note that the sampled spanning trees t ∈ T(G)
are not needed explicitly for computing Sn→ REF(G) in
Eq. (6). They can however be reconstructed for a given
walker by collecting all the edges traversed during
Step 4.

Concrete applications of the SST algorithm
For illustration purposes, we first apply the SST al-
gorithm to the IFFL mentioned in the “Background” sec-
tion (Figure 1A). Since the three corresponding spanning
trees {t1, t2, t3} are easily constructed (Figure 1B), we do
not need the sampling part of the SST algorithm. Taking
node A as the reference node REF, Eq. (5) yields directly
the following aggregation weights: (SA→ REF =A, SB→ REF =A,
SC→REF =A) = (1, 0.333, 0.333). Supposing the nodal values
XA =XB =XC = 1, which correspond to typical gene
differential expressions, Eq. (4) gives an aggregated value
XIFFL = 1.667. This result is smaller than the sum of the in-
dividual values XA +XB +XC = 3, reflecting the fact that
these node values Xn are not consistent with the edge
B —| C of the graph. In terms of spanning trees,
Eq. (3) yields (X(t1),X(t2),X(t3)) = (3, 1, 1). This shows that
the spanning tree t1 provides the highest contribution to
XIFFL, which is due to it not containing the discrepant edge
B —| C. Using other node values Xn enables us to make
similar considerations. We conclude from this simple ex-
ample that aggregation based on spanning trees gives
quantitatively consistent results and that the results of
both the node-based and the spanning tree-based repre-
sentations can be meaningfully interpreted.
We then applied the SST algorithm to more complex

causally inconsistent network models (including “Hypoxic
Stress”) that have been constructed to faithfully describe
real biological processes in the lung, and therefore include
negative feedback and contradictory regulatory relation-
ships [6,10-12]. Because of the particular semantics of the
BEL language used to encode these network models, it
was first necessary to slightly adapt the random walk rules
to account for extra granularity in the network edges. This
resulted in an implementation of the SST algorithm that
contains an adequately modified Step 2, as explained in
the Appendix.
To evaluate the results of the SST algorithm, we derived
wherever possible pruned causally consistent versions of
the causally inconsistent network models. Indeed, for
many of these causally inconsistent networks we were able
to manually remove a small number of edges to obtain re-
duced causally consistent networks that are biologically
closest to the original networks. The pruned network
models contain the same nodes as the original network
models but differ by the signs of the relationships between
some of their nodes. As such, they do not describe all the
biological processes contained in the original network
models and therefore should be applied preferably in the
situations where the discarded processes do not constitute
the dominant biology. If such situations are relevant in
the cases where the network models will be considered,
then using the pruned network models is justified (see
the application to the TNF treatment dataset below for
a concrete case). The decision to remove an edge was
made based on the expected or desired causal relation-
ships between each node and the reference node. For
example, feedback loops were edited so that negative
regulators were negatively related to the network
through inhibitor activity, rather than positively related
to the network through their transcriptional regulation.
In so doing, we were able to compare the SST results
calculated on the causally inconsistent networks (i.e.,
the effective nodal weights Sn→ REF(G) ∈ [−1, + 1]) with
the aggregation results obtained on the corresponding
pruned causally consistent network versions (i.e., the
nodal signs sn→ REF(GPRUNED) ∈ {−1, + 1}). As the SST
algorithm essentially consists of combining many caus-
ally consistent versions of the original network model
deduced from the sampled spanning trees, these com-
parisons provide valuable “biological benchmarks” for
our results.
We first ran the SST algorithm on the “Hypoxic

Stress” network model that contains 144 nodes and 241
edges [10]. Using 1,000 spanning trees was sufficient to
produce nodal weights Sn→ REF(GHS) (as given by Eq. (6))
with a median difference of less than 0.01 from the nodal
weights using 20,000 spanning trees (maximum difference
less than 0.05). Additionally, a manual biological inves-
tigation was performed to produce a pruned causally
consistent version of the network model that preserves
its biological integrity by removing four edges (Additional
file 1: Table S1). A comparison between the effective nodal
weights Sn→ REF(GHS) from SST and the unambiguous
nodal signs sn→ REF(GHS, PRUNED) identified only a single
node that differed in sign. A closer examination of the
SST results revealed an interesting configuration in the
region of the network magnified in Figure 1C: a causal
inconsistency is present between the transcriptional ac-
tivity of HIF1A (Hypoxia-inducible factor 1-alpha), the
abundance of TXNIP (Thioredoxin-interacting protein)
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RNA, and the abundance of TXNIP protein. This causal
inconsistency is indicated by the two paths “TXNIP
protein —| HIF1A transcriptional activity” and “TXNIP
protein ←TXNIP RNA ← HIF1A transcriptional activ-
ity” having opposite signs. The SST results indicate that
the first path is preferred in the context of the aggrega-
tion over the “Hypoxic Stress” network: the “TXNIP
protein” node has a negative sign and the “HIF1A tran-
scriptional activity” node has a positive sign, in agree-
ment with their negatively-signed connecting edge
(“—|”). Furthermore, the effective weight from SST for
the “TXNIP RNA” node is very close to zero, meaning
that the sign of this node is largely ambiguous with re-
spect to the reference node and thus this node has little
contribution to aggregation over the “Hypoxic Stress”
network. From a biological point of view, the edge con-
necting the “TXNIP RNA” node to the protein node
was chosen to be removed (Additional file 1: Table S1),
because the protein abundance and the activity of TXNIP
are negative regulators of the pathway, and thus should
have a negative contribution to the aggregated network
score. These considerations are compatible with the SST
results. This particular case indicates that the SST algo-
rithm is scalable to more complex networks and that its
results reflect the biological content of the network when
considered in the aggregation context.
We further evaluated the results of the SST algorithm

by assessing its performance against a set of graphs that
were manually pruned to become causally consistent, as
with the “Hypoxic Stress” network discussed above. Of
the 81 (=15 + 7 + 32 + 23) networks contained in the cell
proliferation, cellular stress, DNA damage/autophagy/
cell death/senescence, and pulmonary inflammation
publications [6,10-12], 26 (=7 + 5 + 2 + 12) were causally
inconsistent and 19 (=4 + 2 + 2 + 11) could be manually
transformed into causally consistent networks using
the same criteria as described above (Additional file 1:
Table S1). We used the SST algorithm to compute the
effective nodal weights Sn→ REF ∈ [−1, + 1], and compared
them with the nodal signs sn→ REF ∈ {−1, + 1} defined on
the corresponding manually resolved networks. From the
perspective of a classification problem, where Sn→ REF give
the predictions and sn→ REF the actual values, the SST al-
gorithm exhibits high accuracy, with a 4.4% rate of mis-
labeling directions (using zero threshold for the Sn→ REF

values, and averaging across all networks; the mislabeling
rate ranged from 0% to 19% for individual networks). The
overall area under the receiver operating characteristic
curve (AUROC) measured for the SST algorithm was
0.992 (ranging from 0.90 to 1.0 for individual networks),
and the majority of mislabeling events occurred with ef-
fective nodal weights near zero (Figure 1D). These re-
sults show that the conclusions drawn for the SST
algorithm in the case of the “Hypoxic Stress” network
can be extended to other network models, which further
supports the reliability of the approach.
Finally, we applied the SST algorithm to a concrete

example of NPA and Biological Impact Factor (BIF) cal-
culations requiring input gene differential expression
data [1,5,16]. Note that because the SST algorithm is
exclusively based on the prior biological knowledge of a
network model, involving gene expression data will not
change its actual results (i.e. the effective nodal weights
Sn→ REF(G)). Rather, it will offer an additional perspec-
tive by reframing the a priori comparisons between the
effective nodal weights Sn→ REF(G) and the nodal signs
sn→ REF(GPRUNED) in context of the a posteriori compar-
isons between the corresponding of NPA scores. We
used a public data set describing the effect of TNF treat-
ment of normal human bronchial epithelial (NHBE)
cells, which was already used in our scoring framework
[1,17] (see the Appendix for more details). Of the 19
networks from Additional file 1: Table S1, the tissue
contexts of eight networks were consistent with NHBE
cells. The NPA GPI (geometric perturbation index)
scores of these eight networks were computed using the
effective nodal weights Sn→ REF from SST for their caus-
ally inconsistent version and the nodal signs sn→ REF for
their pruned causally consistent version [1,16]. For each
network, the scores were calculated for the 16 possible
treatment versus control comparisons (four non-zero
treatment doses and four time points). The results are
displayed in Figure 2. Six of the eight networks dis-
played correlations of about 0.9. The poor correlation
for the “Notch” network is consistent with the fact that
none of the scores passed the Specificity and Uncer-
tainty criteria, indicating that these scores largely reflect
noise rather than true biological perturbation [1]. The
poor correlation for the “Replicative Senescence” network
results from the fact that all of the nodes with different
signs for Sn→ REF and sn→ REF lie in a single causally incon-
sistent region of the network that relates the impact of
replicative senescence to MAPK signaling. Consistent with
known TNF activation of MAPKs [18], this region of the
network is rich in nodes with significant scores (based on
Specificity and Uncertainty criteria [1]), often containing
as many nodes with significant scores as the rest of the
network despite being comprised of only ~20% of all
nodes. This important finding illustrates that while the
SST algorithm is able to produce nodal directions that are
generally consistent with the a priori biological expecta-
tions in the particular context of aggregation, any resulting
a posteriori findings based on NPA calculations need to be
investigated in light of both the biological content of the
network models and the specific biology induced in the
underlying experiment, as we are advocating in general for
network scoring [1,16]. For example, here we noted that
TNF-mediated activation of MAPKs led to a large impact
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on the “Replicative Senescence” network through a minor-
ity of network nodes in a single region of the network.
Given the fact that this region contained a causal incon-
sistency that was resolved by the SST algorithm, add-
itional focus can be given to investigating the findings
to ensure that they are biologically relevant. Even with
these caveats, our overall investigation of network nodal
directions and scores broadly confirmed the pertinence
of the SST algorithm in the concrete cases of NPA and
BIF calculations.
The above application of the SST algorithm in the

biological context of a concrete data set suggests a
final remark. Taking Eq. (3) from the previous section
and replacing the exhaustive summation over all N(G)
spanning trees of the graph G by the sampled subset
T Gð Þ ¼ t1;…; tNTf g obtained with Aldous’ method yields
the following expression for the aggregated quantity XG:

XG≈
1
NT

X

t∈T Gð Þ
X tð Þ ; ð7Þ

where X(t) corresponds to the aggregation of the
nodal values Xn over the spanning tree t. By considering
the “sampled” distribution of the aggregated scores
X t1ð Þ;…;X tNTð Þf g , it is possible to extract quantities
such as the “most representative spanning tree” t* for
which |X(t) − XG| is minimal. Because a spanning tree t
unambiguously defines a balanced subgraph of G, we
can define G* as the subgraph of G corresponding to t*.
The fact that t* and G* depend on the nodal values Xn

implies that they can potentially change when consider-
ing several comparisons in NPA and BIF calculations, as
in the example presented above. This can lead to valu-
able data-driven edge-level biological insights that can
be explored in future applications of the SST algorithm,
such as for instance in the case of time-course or dose-
dependent expression data.

Conclusions
In this note, we have described the SST algorithm, which
uses random walks for aggregating nodal values over arbi-
trary signed graphs, including large “causally inconsistent”
network models. We used a remarkable property of suit-
ably generated random walks, which provide a representa-
tive sampling among all the spanning trees of the graph
and an approximation of the nodal effective weights as the
average over the sampled spanning trees. We applied the
SST algorithm to several biological causal networks where
the pertinence of its results could be confirmed using bio-
logically quasi-equivalent but graph-theoretically simpler
networks. This SST algorithm is applicable in a variety
of situations requiring the aggregation of nodal values
(e.g., gene differential expression and nodal NPA scores
[16,19]) over a signed graph and is scalable to arbitrary
graph sizes.

Appendix
(1) Concepts from systems biology
Reverse causal reasoning
In recent years, (reverse) causal reasoning has become
increasingly popular in systems biology [1,9,17,20,21]. It
is based on the idea that the differential expressions
measured in transcriptomics are consequences of the
changes in the activities of upstream controlling entities
(such as, but not limited to, transcription factor proteins).
It represents an alternative to the often implicit assump-
tion that transcript differential expressions reflect changes
in the activity of the corresponding proteins, which is used
when integrating transcriptomics data and pathways and
networks [2].

Causal network models
Reverse causal reasoning is based on high-quality
literature-derived prior biological knowledge organized
in causal network models. In this study, we used the same
naming convention as in our previous publications [1]: a
“causal network model” is a set of edges representing ex-
perimentally supported causal relationships “→” and “—|”
between changes affecting the corresponding nodes, which
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consist of various biological entities (excluding transcript
differential expressions) encoded in BEL [13]. An example
of a “causal network model” is the “Cell Cycle” network
[6]. A “causal network model augmented with down-
stream measurables” is a “causal network model” that
additionally contains all the causal edges ending in nodes
containing transcript differential expressions (termed
“RNA abundance” in BEL). In the literature, the two
cases are not always distinguished [9,20,21].

Causal (in)consistency
A causal network model is said to be causally consistent
if the relative sign in {−1,+1} between any pair of nodes
{A, B} of the network is unambiguous [1]. The relative
sign between nodes A and B is given by the product of
the edge signs in {−1,+1} along any (non-oriented) path
relating the two nodes A and B. If there exists at least
one node pair in the network for which the relative sign
is ambiguous and thus dependent on the chosen path,
then the network is said to be causally inconsistent. The
causal (in)consistency is a fundamental property of causal
network models and is analogous to the notion of balance
in graph theory (see below). Alternative equivalent formu-
lations of this property are possible, in particular based on
Harary’s theorem [22].

Reference node of a causal network model
As a causal network model only contains the relative
signs in {−1,+1} of its nodes, it needs to be assigned a
reference node that fixes the “absolute” sign at the net-
work level. The reference node can be any node in the
network whose level of activity is positively related to
the activity of the network as a whole (see the section
“Constructing a HYP from a causal network model” in
[1]). For instance, the node “cell proliferation” is the
reference node for the causal network model “Cell
Cycle” [6], as increases (or decreases) in cell prolifera-
tion and the cell cycle are always closed related. Refer-
ence nodes have been assigned to all the published
causal network models [16]. Note that the positive sign
given a priori to the reference node within a network
model is not related to the sign of the change of bio-
logical activity it underwent in the a posteriori context
of an experiment.

Network perturbation amplitudes
The idea of “network perturbation amplitudes” (NPA)
extends previous concepts, such as “signaling pathway
impact” analysis (SPIA), where real-values scores have
been calculated to quantify the changes in the biological
activity at pathway or network levels [8]. “Real-valued
scores” are used in contrast with the strictly positive
enrichment p-values that do not contain information
about the sign of the activity change and therefore
cannot distinguish activation from inhibition. Compared
with SPIA, one of the novelties of the NPA approach is
the use of reverse causal reasoning to calculate the inter-
mediate node-level scores [1].

(2) Concepts from graph theory
Graphs
Graphs are the mathematical objects underlying the net-
work models. They are defined as G = (Nodes, Edges)
where “Nodes” is a set of nodes and “Edges” is a set of
edges relating pairs of nodes. Causal network models re-
sult in “oriented signed graphs”: the edges have an orienta-
tion corresponding to the causal direction between the
start and the end nodes (not relevant in this study), as well
as a sign from {−1,+1} describing the relative sign between
the changes in the nodes, with +1 = “→” = “an increase
(decrease) in the start node causes an increase (decrease)
in the end node”, and −1 = “—|” = “an increase (decrease)
in the start node cause a decrease (increase) in the end
node”. As mentioned above, the causal (in)consistency
property of network models is equivalent to the notion of
balance of signed graphs, which has been studied in graph
theory for several decades [22,23].
It is worth remembering that signed graphs are of

interest in a variety of other contexts besides the mathem-
atical description of causal network models considered
here. They are quite extensively used in the modeling of
regulation and signaling in systems biology, not to men-
tion the quantitative analysis of social networks [24],
which includes social psychology, where they initially
appeared [23]. This observation suggests that the SST
algorithm described in this note may be of interest in
these contexts also, because it does not depend on the
specific type of real-valued quantities that are aggre-
gated over the signed graph.

Spanning trees
A spanning tree t of a connected graph G is a connected
subgraph of G that includes all the nodes of G and the
minimal number of edges to remain connected [14]. By
construction, any spanning tree t is balanced. Therefore,
a spanning tree t extracted from an unbalanced graph G
differs from G by at least z edges, where z is the line
index of balance of G [23].

(3) Implementation of the SST algorithm for BEL-encoded
causal network models
The description of the SST algorithm given in the
“Findings” section implicitly assumed that all the edges
of the graph can be treated equally. For semantic reasons,
this assumption does not hold in the case of causal net-
work models encoded in BEL [13]. Intramolecular edges
relating a protein and its activity carry a higher relevance,
and thus a higher likelihood of being retained in the
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spanning tree than direct intermolecular edges relating
the activities of two causally-linked but different proteins
that are known to directly interact. Indirect intermolecular
edges relating the activities of two causally linked proteins
that are not known to interact directly carry a lower
weight. Edges leading to changes in gene expression carry
the lowest weight because they tend to occur over longer
timescales than the other edges in the network and are
often related to feedback loops. Therefore we slightly
adapted Step 2 of the SST algorithm to account for this
extra granularity in the edges of the network models
encoded in BEL:
For each node, a walker randomly chooses an edge to

traverse, according to probabilities given for each edge.
The relative probabilities are fixed as:

a. 1 for intramolecular edges (relationships between
molecules and their activities),

b. 1/2 for direct intermolecular edges (direct bindings
and increases/decreases),

c. 1/3 for indirect intermolecular edges (increases/
decreases),

d. 1/4 for expression edges (relationships leading to
changes in RNA abundance).

This semi-quantitative modeling approach adequately
implements the differences among the edges of the BEL-
encoded network models while guaranteeing a stable
execution of the SST algorithm, by not too strongly af-
fecting the originally uniform spanning tree sampling
procedure. Besides its use in the applications of the SST
algorithm reported in this note, this modeling scheme
has been also satisfactorily employed in two other stud-
ies [16,19]. Some of the SST-based NPA scores were
compared with the corresponding phenotypic endpoints,
which were separately measured (for instance NPA
scores for the “Cell Cycle” network model and fractions
of cells in S-phase measured by flow cytometry [25]).
Both gave consistent results that confirmed the model-
ing approach introduced here.
(4) The TNF treatment dataset
This data set is publicly available under the ArrayExpress
identifier E-MTAB-1027. The data processing used to
obtain the 16 treatment vs. control comparisons is
described in the paragraph “Data processing and algo-
rithm implementation” of our previous publication [1].
The NPA GPI scores for these 16 comparisons were
calculated for both the causally inconsistent and the
pruned causally consistent versions of the eight rele-
vant network models. This yielded 16 pairs of values
for each network, which were globally compared using
Pearson correlation coefficients.
Additional file

Additional file 1: Table S1. Causally inconsistent biological networks
used for the evaluation of the SST algorithm. The networks from the Cell
Proliferation (green, [6]), cellular stress (pink, [10]), DNA damage/
autophagy/cell death/senescence (DACS, yellow, [11]), and pulmonary
inflammation (blue, [12]) publications are indicated together with the
edges that were removed to obtain the pruned causally consistent
versions. The biological motivations for removal are briefly explained in
the “Rationale” column. Note that “catof” represents the catalytic activity
of a protein, “kaof” represents the kinase activity of a protein, “taof”
represents the transcriptional activity of a protein, and “exp” represents
the expression of a gene. The corresponding articles provide more details
on the actual network content.
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