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Abstract

Background: Hepatitis C virus (HCV) causes chronic hepatitis C in 2-3% of world population and remains one of
the health threatening human viruses, worldwide. In the absence of an effective vaccine, therapeutic approach is
the only option to combat hepatitis C. Interferon-alpha (IFN-alpha) and ribavirin (RBV) combination alone or in
combination with recently introduced new direct-acting antivirals (DAA) is used to treat patients infected with HCV. The
present study utilized feature selection methods (Gini Index, Chi Squared and machine learning algorithms) and other
bioinformatics tools to identify genetic determinants of therapy outcome within the entire HCV nucleotide sequence.

Results: Using combination of several algorithms, the present study performed a comprehensive bioinformatics
analysis and identified several nucleotide attributes within the full-length nucleotide sequences of HCV subtypes
1a and 1b that correlated with treatment outcome. Feature selection algorithms identified several nucleotide
features (e.g. count of hydrogen and CG). Combination of algorithms utilized the selected nucleotide attributes
and predicted HCV subtypes 1a and 1b therapy responders from non-responders with an accuracy of 75.00% and
85.00%, respectively. In addition, therapy responders and relapsers were categorized with an accuracy of 82.50%
and 84.17%, respectively. Based on the identified attributes, decision trees were induced to differentiate different
therapy response groups.

Conclusions: The present study identified new genetic markers that potentially impact the outcome of hepatitis C
treatment. In addition, the results suggest new viral genomic attributes that might influence the outcome of
IFN-mediated immune response to HCV infection.
Background
Hepatitis C virus (HCV) is a blood-borne virus, which
causes chronic hepatitis in humans. Despite its discovery
over 2 decades ago [1], HCV remains one of the major
health threatening infectious agents worldwide. Recent es-
timations indicate that approximately 2-3% of world popu-
lation (125–175 million) suffer from chronic hepatitis C
[2]. So far, at least six major HCV genotypes (1–6) with
less than 72% nucleotide identities, each comprised of sev-
eral subtypes (1a, 1b, etc.) with 75-86% nucleotide iden-
tities, have been identified. The single-stranded viral RNA
genome with a size of ~9.6 kb replicates through a
* Correspondence: Mansour@future.org; Haqshenas@yahoo.com
†Equal contributors
1Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran
2Present address: Microbiology Department, Monash University, Melbourne,
Australia

© 2014 KayvanJoo et al.; licensee BioMed Cen
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Domain Dedication waiver (http://creativecom
article, unless otherwise stated.
double-stranded intermediate form. High frequency of
point mutations in the HCV genome during virus replica-
tion and the virion structure [3] are major factors hinder-
ing the development of a preventive vaccine. To identify
an effective therapeutic approach, HCV biology and viral
structural (core, E1, and E2) and non-structural (NS)
(NS2-3, NS4A-B, NS5A-B) proteins have been extensively
studied. Currently, therapeutic regimens for treatment
of HCV–infected patients involve HCV direct-/indirect-
acting antivirals. Combination of pegylated interferon-
alpha (IFN-alpha) and ribavirin (RBV) is prescribed by
physicians for treatment of hepatitis C. IFN, a known
broadly acting antiviral cytokine, is an essential compo-
nent of innate immune response. The exact mechanism of
action of RBV remains unknown although it improves
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response rate when it is combined with interferon [4]. The
recently FDA approved direct-acting antivirals (DAA, tela-
previr and boceprevir) that are used in combination with
IFN/RBV have improved HCV therapy success rate by 16-
40% [5,6]. Long-term IFN/RBV combination treatment
(24–48 weeks) is required to achieve sustained virological
response (SVR). Some patients resolve the virus at the
completion of treatment (responders), of whom a propor-
tion demonstrate a virus rebound within 6 months post-
treatment (relapsers). Some HCV patients are resistant to
combination therapy (non-responders). The success rate
of HCV treatment depends on many host and viral factors.
Patients who are chronically infected with HCV genotype
1 poorly respond to the combination treatment (about
50% SVR) while higher response rate is observed when pa-
tients are infected with genotypes 2 and 3 (about 70-80%
SVR). The genotype-dependent therapy response rate sug-
gests that the composition of viral nucleotide and amino
acid sequences may impact the therapy outcome. Several
comparative analyses have indicated that the amino acid
sequences of the HCV proteins including core [7,8], E2
[9-13], p7 [13], NS2 [13,14], NS5A [10-13,15] and NS5B
[16] may the success rate of the combination treatment. In
addition, host parameters including genetic polymorphism
in IL28B locus have been indicated as therapy response
rate determinants [17,18].
There is insufficient data describing nucleotide attri-

butes that correlate with response to therapy. In addition,
genomic determinants that may predict the relapse of the
disease following a successful clearance remain unclear.
This study aims to use various clustering, screening, and
decision tree models to analyse full-length HCV genomes
and identify novel genetic markers for the prediction of
HCV therapy outcome.

Results
The initial dataset contained 93 full-length nucleotide se-
quences of HCV subtypes 1a and 1b from Virahep study
[19]. A summary of all data processing steps adopted in
this study to predict therapy outcome has been presented
in Figure 1. For each sequence, 76 gene attributes were
computed. Using data filtering algorithms, useless and
closely related attributes (correlations higher than 95%)
were excluded. Overall, 35–37 attributes were identified
useful for the identification of different treatment out-
come groups.

Attribute weighting
The importance and the contribution of each useful at-
tribute in building the target variable (response to treat-
ment) was evaluated by attribute weighting algorithms.
Data was normalized to give a value between 0 and 1 to
each weight [20-23]. The important attributes and the
number of models which allocated a weight above 0.5 to
each attribute have been presented in Table 1A and B,
respectively. All Attributes and the relevant weighting
models have been presented in an Additional file (see
Additional file 1). Only attributes that gained weights
higher than 0.5 were used by prediction and tree induc-
tion algorithms to predict the response to treatment.

Trees induction
A decision tree is constructed by looking for regularities
in data, determining the features to add at the next level
of the tree using an entropy calculation, and then choos-
ing the feature that minimizes the entropy impurity [24].
As shown in Figure 2, a tree model for subtype 1a re-
sponders vs. non-responders was generated based on the
double strand count of nitrogen and hydrogen. A nitro-
gen value ≤ 68358.50 classified some sequences as re-
sponders though it did not distinguish all responders.
When a nitrogen value is ≥68358.50, therapy outcome
depends on the hydrogen count value. Figure 3 is a tree
model built on the analysis of subtype 1a responders vs.
relapsers’ sequences detected the oxygen count as the
root of the tree and sequences with a value >63177 were
identified as responder group. When the oxygen value
was <63177, the therapy outcome depends on the count
of UU. Figures 4 and 5 represent the tree models devel-
oped for subtype 1b responders vs. non-responders and
responders vs. relapsers’ sequences, respectively.

Prediction algorithms
Various machine based learning algorithms [decision tree,
Support Vector Machine (SVM), Naive Bayes and Neural
Networks] were trained and tested to predict IFN/RBV
therapy respond based on computed features. When an al-
gorithm gained the highest accuracy it was used as funda-
mental predictor for IFN/RBV response treatments.

Decision tree
Decision tree classifiers are the most popular super-
vised learning methods for data exploration. The trees
summarize and transform data into a more compact
forms that maintain the essential characteristics for an
easy interpretation [25].
The best performance among 176 decision tree models

(16 models run on 11 datasets) in the prediction of ther-
apy response are presented in Table 2A and B. The high-
est accuracy values for the prediction of subtypes 1a and
1b responders from non-responders were 69.17% and
80.00%, respectively. The highest accuracy (81.67%) was
achieved for both subtypes when responder and relapser
groups were analysed.

SVM approach
SVM algorithms have become very popular as a
high-performance classifier in several fields including



Figure 1 Flowchart of data-mining processes that were applied to each of comparative groups.
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bioinformatics. The main objective is to construct a hyper-
plane as the decision surface so that the margin of separation
between positive and negative examples is maximized [25].
The best accuracy values for the 1a and 1b responder vs.

non-responder sequences using SVM analysis showed
74.17% and 75.00% accuracies, respectively. SVM analysis
revealed higher accuracies up to 82.50% and 84.17% for
responder vs. relapser of subtypes 1a and 1b sequences,
respectively. A summary of results including sensitivity,
specificity, precision, recall and F-measure have been pro-
vided in Additional files 2 and 3.
For SVM analysis on the 1a and 1b responder vs. non-

responder sequences, the best accuracy values were
74.17% and 75.00%, respectively. The accuracies of our ap-
proaches were estimated to be higher when responder vs.
relapser of subtype 1a sequences (82.50%) and responder
vs. relapser of subtype 1b sequences (84.17%) were ana-
lyzed. Accuracy values and other parameters (sensitivity,
specificity, precision, recall and F-measure) have been pre-
sented in Additional files 2 and 3.
Naïve Bayes
The Naive Bayes classifier is a simple learning algorithm
that is used for data mining applications. This algorithm
can also be used as a predictive model.



Table 1 Most important nucleotide attributes that were
selected by different weighting algorithms

A

Subtype 1a (Responders vs.
Non-Responders)

Subtype 1b (Responders vs.
Non-Responders)

Attribute

No. of selective
attribute
weightings
(out of 10)

Attribute

No. of selective
attribute
weightings
(out of 10)

Count of hydrogen 9 Count of GC 8

Count of oxygen 8 Count of UA 7

Count of CA 7 DS Count of
nitrogen

7

Count of CG 7 Count of AU 6

Count of Cytosine 7 Count of GG 5

Count of Guanine 7 Count of Uracil 5

Count of GU 6

Count of UU 5

Count of UA 5

Count of CC 5

B

Subtype 1a (Responders vs.
Relapsers)

Subtype 1b (Responders vs.
Relapsers)

Attribute

No. of selective
attribute
weightings
(out of 10)

Attribute

No. of selective
attribute
weightings
(out of 10)

Count of oxygen 10 Count of UU 6

Count of UU 7 Count of CA 5

Count of Uracil 7 Count of carbon 5

Count of nitrogen 6

Ten algorithms (PCA, SVM, Relief, Uncertainty, Gini Index, Chi Squared,
Deviation, Rule, Information Gain, and Information Gain Ratio) were used to
determine the most important nucleotide attributes for the prediction of HCV
subtypes 1a and 1b responders from non-responders (A) and responders from
relapsers (B). Common nucleotide attributes used for genotypes 1a and 1b
have been bolded. A: adenine, T: thymine, C: cytosine, G: guanine.
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Analysing subtypes 1a and 1b responder vs. non-
responder sequences, Naive Bayes achieved the highest
accuracy of 74.17% and 89.17%, respectively. The highest
accuracy for responder vs. relapser sequences were 82.50%
when Bayes kernel was ran on Relief and 78.33%, when
Bayes kernel was ran on Chi Squared dataset (Table 2A
and B). Full results from Bayesian algorithms are pre-
sented in Additional files 2 and 3.

Neural networks
Neural networks are computational models that are cap-
able of machine learning and pattern recognition and
have been used as predictive models.
Analyzing subtypes 1a and 1b responder vs. non-

responder sequences, the Auto MLP showed the best per-
formance with 76.67% and 85.00% accuracy, respectively,
when it was ran on SVM dataset. By analyzing responder
and relapser sequences, the best accuracy values were
79.17% and 78.33% for subtypes 1a and 1b, respectively
(Table 2A and B). The full results of neural networks are
presented in Additional files 2 and 3.

Discussion and Conclusion
In the absence of an effective vaccine, treatment of HCV-
infected patients is the only means to combat the disease.
Until recently, IFN/RBV combination therapy has been
commonly used to treat HCV patients. The introduction
of replicon systems [26,27] encoding enzymatically func-
tional viral proteins such as NS3 and NS5B has led to the
discovery of new anti-HCV drugs including the two NS3
inhibitors, boceprevir and telaprovir. However, the new
drugs result in an increase in therapy response when they
are combined with IFN and RBV [5,28]. Several reports in-
dicated that viral and host factors influence the combin-
ation therapy outcome. Pascu et al. [15] analysed three
HCV genotype 1b genomes and identified a number of
mutations in a specific region in HCV NS5A named inter-
feron sensitivity determining region (ISDR) that predicted
therapy response. Following this report, other research
groups identified specific regions in other HCV proteins
that predicted treatment outcome [7-9,14,19]. The current
study aimed to analyse nucleotide sequences of HCV
isolates from responders, non-responders, and relapsers
aiming to generate decision trees for the prediction of
treatment outcome. Recently, we have shown that the
comparison of large numbers of sequences using mining
techniques (such as decision tree) generated supervised
and unsupervised models suitable for identification of
novel proteins involved in the malignancy of breast can-
cer and lung cancer [29,30] and genetic markers for
characterization of olive cultivars [20]. Using the same
approach, we identified new genetic determinants that
play important functional roles in the thermostable pro-
teins [31], halostable proteins [32], and P1B-ATPase
heavy metal transporters [21]. Furthermore, feature se-
lection techniques and other learning methods such as
bipartite learning graph and semi-supervised algorithms
have already been used in drug-target interactions and
the capability of these methods in predicting drug-
target datasets has been proven [33]. In the present
study, we used the same strategy to evaluate correlation
between HCV gene attributes at nucleotide levels with
treatment response. Different attribute weighting sys-
tems used unique patterns to define the most important
attributes for classification of data. To assess the genetic
markers that affect the response to treatment, we ana-
lysed sequences from the patients that responded (more
than 3.4 logs decline in viral load) or failed to respond
(less than 1.4 log decline in viral load) to therapy at
28 days post-treatment. Analysing both subtypes 1a and
1b, some attribute weighting algorithms predicted



Figure 3 Achieved Decision Tree from Parallel model ran with Gini
Index criterion on Chi Squared dataset, which can distinguish HCV
subtype 1a responder strains from relapser strains.

Figure 2 Achieved Decision Tree from Parallel model ran with Gini Index criterion on PCA dataset, which distinguish HCV subtype 1a
responders’ strains from non-responders strains.
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treatment response based on the UA count (Table 1A).
The nucleotide composition of viral RNA may affect its
sensitivity to IFN-stimulated genes (ISGs) such as
RNase L which cleaves the RNA at dinucleotides UU
and UA [34]. Interestingly, dinucleotide UU was se-
lected by 60-70% models to distinguish responders from
relapsers in both subtypes. Collectively, our analyses
highlight the importance of dinucleotides UA and UU
in combination treatment outcome. Strikingly, count of
oxygen was an important attribute only when subtype
1a responders were compared to non-responders and re-
lapsers (Table 1A and B). Our analysis identified several
other dinucleotides that were selected as determining
attributes for distinguishing responders from non-
responders and relapsers. These attributes may contribute
to viral RNA structures that promote/prevent interactions
with ISGs; however further investigation is required to de-
termine their significance and precise role in HCV therapy
response. The method employed in this study can be used
to explore other viral features such as amino acids compo-
sitions, mRNA, miRNA and protein features in addition
to nucleotide features.



Figure 4 Achieved Decision Tree model ran with Gini Index criterion on PCA Dataset, which can distinguish HCV subtype 1b responder
strains from non-responder strain.
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Several mechanisms of action have been described for
nucleotide analogue RBV but the exact mechanism are
not fully understood [35]. Using an in vitro assay, Maag
et al. [36] demonstrated that only high concentrations of
RBV lead to its incorporation into HCV genome oppos-
ite of cytosine and uridine and terminated elongation
process mediated by viral polymerase NS5B. Analysing
subtypes 1a and 1b responders and non-responders re-
vealed that count of guanine was selected as an import-
ant attribute only in subtype 1a sequences. However, the
accounts of guanine and adenine in viral genome are not
Figure 5 Decision Tree from Parallel model ran with Accuracy
criterion on Rule Dataset of HCV subtype 1b responders vs.
relapser strains.
common selected determinant between both subtypes
and do not support the proposed above mechanism of
action of RBV at physiological concentrations. In line
with our finding, it has been reported that using nucleo-
tide analogues for treatment of HIV infections does not
select for the nucleotide compositions of the viral gen-
ome [37].
The majority of induction tree models failed to distin-

guish between responders and relapsers and non-
responders. Decision Tree and Decision Tree parallel
models generated decision trees with a reasonably high
accuracy for the prediction of therapy response. Some
tree induction models had simple configuration with
three or four branches (Figure 4) however the depth of
trees in some models were more complicated (Figure 2).
The highest accuracies values for the prediction of sub-
types 1a and 1b responders from non-responders were
69.17% and 80.00%, respectively. In addition, the sensi-
tivity and specificity of these models were 0.88 and 0.60
for subtype 1a and 0.90 and 0.65 for subtype 1b. When
responder and relapser groups were analysed the highest
accuracy, 81.67%, was achieved for both subtypes 1a and
1b and the sensitivity and specificity of these models
reached up to 0.80 and 0.85 for subtype 1a and 1.00 and
0.14 for subtype 1b, respectively (Table 2A and B).
The prediction performances of Neural Net algorithm

in analyzing responders vs. non-responders sequences
showed that AutoMLp algorithm could be used for pre-
diction with accuracies up to 76.67 for subtype 1a and
85.00% for subtype 1b. Also analysing subtype 1a re-
sponders vs. relapsers sequences revealed that Neural
Network algorithm had the best prediction with accur-
acy up to 79.17 and sensitivity and specificity as high as
0.92 and 0.55, respectively; while in analyzing subtype 1b
the Perceptron algorithm showed the highest accuracy



Table 2 The highest values for accuracy, AUC, F-measure, precision, recall, sensitivity, and specificity for predicting
responders vs. non-responders (A) and responders vs. relapsers (B) groups

A

Subtype 1a (Responders vs. Non-Responders) Subtype 1b (Responders vs. Non-Responders)

Bayes Neural
Networks SVM Decision Trees Bayes Neural

Networks SVM Decision Trees

Database Chi Squared SVM Relief PCA SVM SVM Relief Gini Index

Algorithm Naive Bayes
(Kernel)

AutoMLp SVM
DT Parallel Gini

Index
Naive Bayes
(Kernel)

AutoMLp SVM
DT Random Forest Info

Gain

Accuracy 74.17% 76.67% 74.17% 69.17% 89.17% 85.00% 75.00% 80.00%

AUC 0.84 0.68 0.75 0.59 0.94 0.94 0.84 0.83

AUC
(optimistic) 0.84 0.68 0.75 0.83 0.94 0.94 0.84 0.85

AUC
(pessimistic) 0.84 0.68 0.75 0.58 0.94 0.94 0.84 0.80

F-Measure 0.78 0.82 0.80 0.73 0.92 0.87 0.80 0.86

Precision 0.84 0.82 0.80 0.80 0.93 0.94 0.81 0.87

Recall 0.73 0.82 0.88 0.73 0.93 0.83 0.83 0.90

Sensitivity 0.73 0.82 0.88 0.73 0.93 0.83 0.83 0.90

Specificity 0.85 0.75 0.60 0.65 0.85 0.80 0.50 0.65

B

Subtype 1a (Responders vs. Relapsers) Subtype 1b (Responders vs. Relapsers)

Bayes Neural
Networks SVM Decision Trees Bayes Neural

Networks SVM Decision Trees

Database Chi Squared SVM Relief PCA SVM SVM Relief Gini Index

Algorithm Naive Bayes
(Kernel)

AutoMLp SVM
DT Parallel Gini

Index
Naive Bayes
(Kernel)

AutoMLp SVM
DT Random Forest Info

Gain

Accuracy 82.50% 79.17% 82.50% 81.67% 78.33% 78.33% 84.17% 81.67%

AUC 0.89 0.79 0.82 0.61 0.00 0.66

AUC
(optimistic) 0.89 0.79 0.82 0.91 0.85 0.85

AUC
(pessimistic) 0.89 0.79 0.82 0.74 0.15 0.47

F-Measure 0.84 0.86 0.86 0.84 0.87 0.87 0.91 0.89

Precision 0.92 0.83 0.90 0.90 0.78 0.78 0.84 0.82

Recall 0.82 0.92 0.87 0.80 1.00 1.00 1.00 1.00

Sensitivity 0.82 0.92 0.87 0.80 1.00 1.00 1.00 1.00

Specificity 0.85 0.55 0.75 0.85 0.00 0.00 0.29 0.14
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with 78.33% and its sensitivity was 1.00 though its speci-
ficity was far low (Table 2A and B).
SVM is a supervised non-parametric statistical learning

technique, therefore there is no assumption problems usu-
ally involve identification of multiple classes. From seven
models of SVM applied on 11 datasets of subtypes 1a and
1b in this study, the accuracies of SVMs algorithm were
high (74.14% for 1a and 75.00% for 1b) for responders vs.
non-responders sequences in both subtypes. By comparing
responders vs. relapsers sequences, SVM algorithm showed
82.50% accuracy for subtype 1a while SVM LibSVM dem-
onstrate the highest accuracy (84.17%) for subtype 1b
(Table 2A and B).
When Naïve Bayes models trained with machine learn-
ing models, the performances of Naïve Bayes Kernel
models were generally higher than models ran with Naïve
Bayes (without Kernel). The highest possible accuracies
gained when Naïve kernel Base models ran on the re-
sponders vs. non-responders sequences (74.17% and
89.17% for subtypes 1a and 1 b, respectively) and the sensi-
tivity and specificity reached up to 0.73 and 0.85 for sub-
type 1a, and 0.93 and 0.85 for subtype 1b. These achieved
criteria make Naïve Bayes Kernel one of the best prediction
models in comparing responders vs. non-responders se-
quences. Our findings suggested that Naïve-Based Kernel
model has the best prediction accuracy in comparing
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responders vs. relapsers’ sequences with figures up to
82.50% and 78.33% for subtypes 1a and 1b, respectively.
Therefore, this model could be regarded as the most suit-
able algorithm for prediction responders vs. relapsers’ se-
quences (Table 2A and B).
In conclusion, we applied combination of different al-

gorithms on the genomic attributes of HCV subtypes 1a
and 1b and identified novel genetic markers including
several dinucleotides that predicted therapy response
rate with high accuracy.

Methods
Ninety three full length nucleotide sequences from sub-
types 1a (12 relapsers, 22 responders and 13 non-
responders) and 1b (7 relapsers, 26 responders and 13
non-responders) [14,19] were extracted from GenBank.
Further information regarding the outcome of the treat-
ment was extracted from Virahep study (publically
available) by Dr Donlin, Department of Biochemistry &
Molecular Biology, Saint Louis University School of
Medicine, USA. Some original sequences contained de-
letions at their extreme ends. To avoid the effects of
length factor of the sequences, the 93 sequences were
aligned and adjusted by removing the extreme ends of
all other sequences. The above sequences have been
obtained by direct sequencing of PCR products from
pre-treatment samples [19]. The adjusted nucleotide se-
quences of HCV subtypes 1a and 1b were divided into 2
groups thereby creating four datasets; responders vs.
non-responders, responders vs. relapsers for each sub-
type. Seventy six gene attributes – e.g. count and fre-
quency of each nucleotide, di-nucleotides and elements,
and molarities of salt contents (the concentration of
monovalent cations in units of molar) were extracted
using various bioinformatics tools and various software
including CLC bio software (CLC bio, Finlandsgade 10–
12, Katrinebjerg 8200 Aarhus N Denmark). List of each at-
tributes and calculated values are presented in Additional
files 4 and 5. Treatment types feature were categorical,
and the other attributes were continuous variables. A
dataset of these gene attributes was imported into Rapid
Miner software [RapidMiner 5.0.001, Rapid-I GmbH,
Stochumer Str. 475, 44227 Dortmund, Germany]. The
null data for treatment type attribute was excluded, and
this attribute was set as the output variable and the
other variables were set as input variables.

Data filtering
We did not detect any duplicated attributes (two exam-
ples were assumed equal if all values of all selected attri-
butes were equal) in our datasets. Related (with Pearson
correlation greater than 0.9) and useless attributes were
excluded from the dataset. Numerical attributes which
possessed standard deviations less than or equal to a
given deviation threshold (0.1) were considered useless.
The final dataset was named final cleaned database
(FCdb).
Attribute weighting
To identify the most important gene attributes, and to find
likely patterns in ones that contribute to HCV therapy re-
sponses, 10 different algorithms of attribute weightings
namely Information Gain, Information Gain Ratio, Rule,
Deviation, Chi Squared, Gini Index, Uncertainty, Relief,
Support Vector Machine (SVM) and PCA were applied to
the FCbd as described previously [22,23,38].
Following attribute weighting application, each attribute

gained a value between 0–1 indicating the importance of it.
All variables with weights equal to or higher than 0.5 se-
lected and saved as new dataset; consequently, 10 new
datasets were created. These newly formed datasets named
according to their applied attribute weighting models
(Information gain, Information gain ratio, Rule, Deviation,
Chi Squared, Gini index, Uncertainty, Relief, SVM and PCA).
Machine learning algorithms
Three classes of machine learning algorithms namely Trees
Inductions, SVM, and Bayesian along with the Neural
Network were used to analyze the 11 datasets (see above)
and construct models suitable for the prediction of HCV
therapy response. To calculate the performance of each al-
gorithm, 10-fold cross validation [39] was used to train
and test models on all patterns. The classifier was trained
on 90% of the data, and the remaining 10% were used as
an unseen test set to assess the classifier’s performance.
This procedure was repeated 10 times (10-folds), with a
different 10% of the data randomly selected as the test set
in each repeat [40,41]. In this study, accuracy is calculated
by taking the percentage of correct predictions over the
total number of examples. Correct prediction means exam-
ples where value of prediction attribute is equal to the
value of label attribute.
Trees induction algorithms
Four Trees Induction algorithms namely Decision Tree,
Decision Tree Parallel, Decision Stump and Random
Forest were run on the 11 datasets described in attribute
weighting section. Each tree induction algorithms ran
with Gain Ratio, Information Gain, and Gini Index and
accuracy criteria. All algorithms except Random Forest
created only one decision tree model; on the other hand
Random Forest algorithm generated 10 different trees
models for each criteria and consequently 572 trees were
generated by all algorithms [38]. All models were trained
and tested with 10-fold cross validation and the averages
of the accuracy values were calculated.
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SVMs
SVMs are theoretically well-established intuitive and
feasible techniques for classification and prediction of
supervised data [42-47]. We used seven SVMs models to
classify and predict the HCV treatment response.
SVM learner uses the Java implementation of the sup-

port vector machine mySVM by Stefan Rueping [48].
This learning method can be used for both regression
and classification and provides a fast algorithm and
good results for many learning tasks. mySVM works
with linear or quadratic and even asymmetric loss func-
tions. This algorithm used dot kernel type for its learn-
ing process.
LIBSVM is an integrated software for support vector

classification, (C-SVC, nu-SVC), regression (epsilon-SVR,
nu-SVR) and distribution estimation (one-class SVM). It
supports multi-class classification. The kernel type used
for this algorithm was rbf.
Fast Large Margin learner is based on the linear support

vector-learning scheme proposed by R.-E. Fan, K.-W.
Chang, C.-J.Hsieh, X.-R.Wang, and C.-J. Lin. Although its
results is similar to those delivered by classical SVM or lo-
gistic regression implementations, this linear classifier is
able to work on data set with millions of examples and
attributes.
Linear SVM is an extremely fast machine learning (data

mining) algorithm for solving multi-class classification
problems from ultra large data sets that implements an
original proprietary version of a cutting plane algorithm
for designing a linear SVM. Linear SVM is a linearly scal-
able routine meaning that it creates an SVM model in a
CPU time, which scales linearly with the size of the train-
ing data set.
Evolutionary SVM (ESVMs) incorporate the learning

engine of SVMs but develop the coefficients of the deci-
sion function by means of evolutionary algorithms. This
algorithm used radial kernel type in this study.
SVMPSO is initialized with a group of random parti-

cles (solutions) and then searches for most efficient par-
ticles by updating each generation [49]. This algorithm
trained with radial kernel type.
Hyper SVM model identifies the best parameter orders

to reproduce a new classification. This model utilizes a
Huffman-Tree like mechanism, called hyperSVM [50].
Briefly, main database (FCdb) transformed to SVM format
and scaled by grid search (to avoid attributes in greater
numeric ranges dominating those in smaller numeric
ranges) and to find the optimal values for operator param-
eters. Datasets were divided into 10 subsets; 9 training
subsets and 1 testing subset.
To ensure the best performance of SVM models, dif-

ferent parameters including accuracies, specificity, sen-
sitivity, F-measure, and AUC (pessimist and optimist)
were calculated.
Naïve Bayes
Naïve Bayes is based on the Bayes conditional prob-
ability Rule and represents an attractive classification
tool when predictors are statistically independent. Two
classification models namely Naïve base and Naïve
base kernel trained with 10-fold cross validation on all
11 datasets to predict responders/relapsers and non-
responders. The accuracy of models was estimated as
described [29].
Neural network
Two neural net algorithms (Neural Net and AutoMLP)
trained with 10-fold cross validation on all 11 databases
and the model accuracies in predicting the right pro-
tein’s class computed as stated before.
Neural Net is a procedure that trains a neural net

using a feed-forward neural network algorithm. A feed-
forward network is an artificial neural network with an
algorithm where the connections between the modeled
neurons are such that the information propagation is in
one direction, from the input node, through intermedi-
ate nodes, to the output node.
A multilayer perceptron (MLP) is a feed-forward artifi-

cial neural network model that maps sets of input data
on a set of suitable output. An MLP contains of multiple
layers of nodes in a directed graph. Except for the input
nodes, each node is a processing element that has a non-
linear activation function. MLP employs back propaga-
tion for training the network. This class of networks
includes multiple layers of computational elements, usu-
ally interconnected in a feed-forward way. In many ap-
plications, the units of these networks apply a sigmoid
function as an activation function.
In this study, a default-hidden layer with sigmoid type

and size (number of attributes + number of classes)/2 +
1 created and added to the net and the training cycle
was set to 500. The used activation function was the
usual sigmoid function. Therefore, the values ranges of
the attributes scaled to −1 and +1. The type of the out-
put node is sigmoid because the learning data described
a classification task.
AutoMLP algorithm combines ideas from genetic al-

gorithms as well as stochastic optimization [51]. The
method maintains a small ensemble of networks that
are trained in parallel with different rates and different
numbers of hidden units. After a small, fixed number
of epochs, the error rate is determined on a validation
set and the worst performers are replaced with copies
of the best networks, modified to have different num-
bers of hidden units and learning rates. Hidden unit
numbers and learning rates are drawn according to
probability distributions derived from successful rates
and sizes.
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