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Abstract
Objective The class II transactivator (CIITA), encoded by the CIITA gene, controls expression of immune response 
regulators, which affect bone homeostasis. Previously, we investigated a functional CIITA polymorphism in elderly 
women. Women carrying the allele associated with lower CIITA levels displayed higher bone mineral density (BMD), 
but also higher bone loss. The present exploratory study in a rat model sought to investigate effects of differential 
expression of Ciita on bone structural integrity and strength. Two strains DA (normal-to-high expression) and DA.VRA4 
(lower expression) underwent ovariectomy (OVX) or sham-surgery at ~ 14-weeks of age (DA OVX n = 8, sham n = 4; 
DA.VRA4 OVX n = 10, sham n = 2). After 16-weeks, femoral BMD and bone mineral content (BMC) were measured and 
morphometry and biomechanical testing performed.

Results In DA.VRA4 rats, BMD/BMC, cross-sectional area and biomechanical properties were lower. Ciita expression 
was accompanied by OVX-induced changes to cross-sectional area and femoral shaft strength; DA rats had lower 
maximum load-to-fracture. Thus, while lower Ciita expression associated with lower bone mass, OVX induced changes 
to structural and mechanical bone properties were less pronounced.

Conclusion The data tentatively suggests association between Ciita expression and structural and mechanical bone 
properties, and a possible role in bone changes resulting from estrogen deficiency.
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Introduction
Immune response activation produces pro-inflammatory 
cytokines which affect bone remodeling [1]. TNF-α and 
IFN-γ play a role in loss of bone induced by estrogen-
deficiency, leading to osteoporosis [2–4]. An important 
component of the inflammation-promoting cascade are 
the major histocompatibility complex (MHC) class II 
antigens [5]. MHC gene expression is regulated by the 
class II transactivator [5]; thus, altered expression of the 
CIITA gene affects expression of MHC class II antigens 
and antigen presentation.

In ovariectomised (OVX) mice, Ciita is implicated 
in the cascade leading to bone loss via increased IFN-γ 
levels, which stimulate Ciita expression [2]. But intact, 
sexually mature female mice systemically overexpressing 
Ciita also develop an osteopenic phenotype from 12 to 
24 weeks of age [6].

In humans, functional polymorphisms alter CIITA gene 
expression, hence affecting CIITA levels. Previously, we 
investigated CIITA rs3087456 polymorphism in elderly 
women. Women carrying the allele associated with lower 
CIITA levels displayed higher bone mass, but higher 
bone loss [7]. Moreover, in the same cohort, women with 
persistently elevated levels of C-reactive protein, also dis-
played higher bone loss [8].

To investigate the connection between bone properties 
and different inflammatory backgrounds associated with 
differences in expression of the Ciita gene, we performed 
a preliminary study using a well-characterised rat model 
consisting of two strains with differing expression levels 
of Ciita [9–11]. In this exploratory study of female rats 
using OVX to model estrogen-deficiency, our endpoint 
was to describe differences in bone structural integrity 
and strength phenotypes.

Main text
Animals and measurements
Animal care and experiments were performed in accor-
dance with the guidelines of relevant institutional author-
ities and approved by the Animal Ethics Committee, 
Lund, Sweden.

Young adult females from two inbred rat strains were 
used: Dark Agouti (DA) and DA.VRA4, which are geneti-
cally identical except for different alleles in the VRA4 
locus on chromosome 10 including the Ciita gene. 
This results in lower Ciita expression in the DA.VRA4 
strain (DA has normal-to-high expression). Development 
of the congenic strain has been described in detail [10, 
12] and the differential expression characterised in a vari-
ety of tissues [9–11].

Rats were bred at the Clinical Research Centre, Lund 
University, Sweden. The initial number (15 DA; 14 
DA.VRA4) was the minimum ethically appropriate for 
this exploratory study. Based on an osteopenic phenotype 

at 12 weeks in mice [6], rats at ~ 14wks (12-17wks) under-
went bi-lateral ovariectomy (OVX) (n = 10/strain) [13] or 
sham-surgery (n = 4–5/strain); designated Day 0. Rats 
were anaesthetised with isoflurane (set on 2–3, O2: 400, 
N2O: 1000). For post-surgery analgesia, Temgesic (1ml in 
9  l NaCl, dose: 0.2 ml s.c.) or Metacam (2 mg/ml, dose: 
1 mg/kg s.c) was administered.

Sacrifice was 16 wks post-surgery (~ 30w old). Animals 
were euthanized (at end of the study, or for welfare rea-
sons) by an intraperitoneal overdose of Pentobarbital 
(200 mg/kg).

Five rats were prematurely sacrificed due to poor clini-
cal condition (DA: sham x1, OVX x2 in the 2–3 days 
post-surgery due to drawling, lost sutures/weight and/
or pneumonia; VRA4: sham x2, approximately three 
months after surgery due to skin infections). At end-of-
study the four groups were: DA-sham (n = 4); DA-OVX 
(n = 8); VRA4-sham (n = 2); and VRA4-OVX (n = 10).

Animals were weighed on Day 0, 3 weeks and at sacri-
fice. Urine was collected (at 3 and 16 weeks). At sacrifice 
16 weeks post-surgery, left and right femurs were excised 
and blood sampled via cardiac puncture.

Femurs (R) were scanned (with a slight repositioning 
of bones between scans) and total femoral bone mineral 
density (BMD) and bone mineral content (BMC) were 
measured blinded (PIXI DXA Densitometer and PIXI-
Mus software v2.0, Lunar Corporation, USA). Results are 
the mean from two scans.

Femurs (L) were scanned using a XUHR 3D-µCT sys-
tem (MILabs, The Netherlands) by a single operator. 
Triplicate measurements were performed; re-positioning 
the region of interest. Image acquisition: peak voltage 
(50kVp); current (0.21mA); aluminum filter (400  μm); 
exposure (75ms/projection); circular scan (360o rotation; 
0.375o step-angle; 960 projections/rotation). Images were 
reconstructed with voxel sizes 30 microns (bone density) 
or 15 microns (histomorphometric measurements).

Total and mid-shaft femoral bone volume (mm3) and 
density (HU) were measured (VivoQuant 3.0 software). 
Morphometric measurements used Fiji ImageJ (1.52) 
software and the BoneJ (1.x) plugin [14, 15]. Cortical 
parameters measured in femoral shaft included cross-
sectional area (CSA, mm2); thickness (mm); periosteal 
perimeter (mm); minimum, maximum moment of iner-
tia (Imin, Imax (mm4). Trabecular parameters measured 
in the distal femoral metaphysis included: trabecular 
thickness (mm) and spacing (mm); bone volume relative 
to total volume: connectivity density (1/mm3); degree 
of anisotropy. Results are the mean from triplicate 
measurements.

Biomechanical properties were evaluated in the (R) 
femur (Electron E1000 scanner, Instron, UK). Shear 
test: Femur was fixed vertically and an anvil lowered 
onto the femoral head until femoral neck fracture. 



Page 3 of 7Jensen et al. BMC Research Notes          (2023) 16:372 

Three-point-bending test: Femur was placed horizontally 
on two anvils (15  mm apart) and another anvil lowered 
onto the midshaft. Load rate (1 mm/min; 250 N). Maxi-
mum load (N); load-at-break (N); flexure-extension-at-
break (mm); E-modulus (Mpa); energy-at-break (J) were 
recorded.

Serum (CTX-1, osteocalcin, P1NP (ng/ml)) and urine 
(CTX-1; osteocalcin (mg/mmol) were quantified by 
ELISA (RatLaps CTX-1; Rat-MID osteocalcin; Rat/
Mouse PINP; Immunodiagnostic Systems Ltd. UK). 
Urine creatinine (mmol/l) quantification used the Vitros 
4600/5600 analysis system (Ortho Clinical Diagnostics, 
USA). For each animal, results are the mean from dupli-
cate measurements (except osteocalcin, for four urine 
samples). Urinary CTX-1 and osteocalcin are creatinine 
corrected.

Statistical analysis
Comparison of weight and percentage weight-gain used 
2-way-ANOVA (Sidak’s post-hoc). As there was an 
effect of strain on body-weight from 3 weeks onwards 
2-way ANCOVA with body-weight as a covariate and 
BMD and BMC as independent variables was per-
formed (SAS JMP 16.0).

In the analyses we report the overall effects on bone 
parameters of rat strain (regardless of OVX status) and 
from OVX (regardless of strain). Interaction between 
strain and OVX was also assessed. To assess these 
overall effects absolute values were compared using 
2-way ANOVA (Sidak’s post-hoc), or for non-normally 
distributed data, Kruskal-Wallis test (Dunn’s post-hoc) 
was used.

Changes in bone parameters (delta values) in OVX 
versus respective sham groups were calculated for 
each strain (using individual OVX values subtracted 
from sham means) and reported as percentage change 
to account for potential differences in baseline levels. 
When there was an overall effect of OVX (regardless 
of strain) and/or a significant difference between at 
least one of the OVX groups compared to respective 
sham, comparison used unpaired two-way t-test.

Coefficients of variation (CV): BMD/BMC: <2%. 
Total femur max density ≤ 9%, and < 2% for all other 
parameters. Morphometry < 9% and < 4% for trabecu-
lar and cortical parameters.

Unless otherwise stated, analyses were performed in 
GraphPad Prism 9. P < 0.05 was considered significant.

Results
After Day 0 VRA4 rats weighed less than DA although 
weight-gain was similar in both strains, over time and 
in response to OVX (supplementary-Table-1, Addi-
tional file-1).

Key results relating to differential Ciita expression 
and bone structural integrity and strength parameters 
are summarised in Figure-1.

The DA.VRA4 strain had lower BMD (p < 0.01) 
and BMC (p < 0.001) regardless of OVX status. BMC 
was also lower than the corresponding DA groups 
(p < 0.001–0.01) (Figure-1  A; supplementary-Fig-2  A, 
Additional−file 2 ). Following OVX, there was a 
decrease in BMD and BMC (supplementary-Fig-1  A, 
Additional−file 2); but did not differ between strains 
(supplementary-Fig-1B, Additional−file 2).

Overall, bone density and bone volume were unaf-
fected by strain and OVX (supplementary-Fig-
2,Additional−file 3). Regardless of OVX, cortical CSA 
and Imax levels were lower in the DA.VRA4 strain 
(p < 0.001 and p < 0.05), whereas periosteal perimeter, 
thickness, and Imin did not differ between strains 
(Figure-1B; supplementary-Fig-3  A,Additional−file 
4). OVX decreased cortical CSA (across strains), but 
nominally less in the VRA4 strain (p = 0.058). Fur-
thermore, while OVX increased cortical thickness, 
this was less pronounced in the DA.VRA4 strain, 
and no other parameters were affected (supplemen-
tary-Fig-3  A,Additional−file 4). Trabecular thickness 
differed between the four groups (p < 0.05), supple-
mentary-Fig-3B, Additional−file 4). Strain per se did 
not affect thickness, and while OVX induced a slight 
increase, there were no differences within each strain. 
No other trabecular parameters were affected (supple-
mentary-Fig-3, Additional−file 4).

In the DA.VRA4 strain, femoral shaft strength and 
toughness parameters (maximum load, load-at-break, 
energy- at-break) were lower than in the DA strain 
(Figure-1  C; supplementary-Fig-4  A, Additional−file 
5), whereas flexure-extension-at-break and E-modu-
lus (elasticity parameters) were unaffected by strain. 
Although OVX decreased maximum load regardless of 
strain, it did not differ between strains; only reaching 
significance in the DA strain at post-hoc analysis. Fol-
lowing OVX, there was an apparent increase in flex-
ure-extension-at-break (p < 0.05) and energy- at-break 
(p < 0.01), but did not differ between strains. OVX did 
not affect load at break or E-modulus: There were no 
overall effects of strain (regardless of OVX) or OVX 
(regardless of strain) on shear test parameters (supple-
mentary-Fig-4B, Additional−file 5).

Neither urinary bone turnover marker differed 
between strains. While OVX generally led to increased 
U-OC levels (p < 0.01–0.05) (Table  1.i-ii) the percent-
age increase was similar in both strains at 3  weeks, 
but considerably higher at 16  weeks (157% vs. 48%, 
p < 0.05) in the DA.VRA4 strain (Table 1.iv-v).

An interaction between strain and OVX on serum 
OC was observed (Table  1.iv-v) with higher levels 
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Table 1 Bone biomarker levels in rat strains differentially expressing the Ciita gene
DA-sham
(n = 4)

DA-OVX
(n = 7–8)

VRA4-sham
(n = 2)

VRA4-OVX
(n = 9–10)

Comparison - overall effects
of strain or OVX

(%) Change
following OVX

(i)
Strain

(ii)
OVX

(iii)
Interaction

(iv)
DA

(v)
VRA4

Week 3
U-CTX-1 25.5 ± 13.1 32.5 ± 19.4 17.5 ± 8.9 34.0 ± 18.3 ns ns ns NA NA
U-OC 21.1 ± 10.4 55.6 ± 29.7 

(7a)
37.1 ± 12.9 100.0 ± 40.5 

b *#
ns p < 0.01 ns 163 ± 141 169 ± 109

Week 16
U-CTX-1 8.5 ± 3.5 9.6 ± 2.4 (7d) 9.6 ± 2.5 12.8 ± 3.2 

(9d)
ns ns ns NA NA

U-OC 9.1 ± 5.4 13.6 ± 5.6 
(7d)

8.0 ± 1.5 20.6 ± 9.4 
(9,c,d)

ns p < 0.05 ns 48 ± 61 157 ± 117*

S-CTX-1 18.2 ± 2.6 20.3 ± 7.0 17.4 ± 1.9 19.0 ± 3.4 ns ns ns NA NA
S-P1NP 10.2 ± 1.4 8.1 ± 1.5 9.2 ± 1.3 8.3 ± 2.4 ns ns ns NA NA
S-OC 172.8 ± 24.1 198.1 ± 17.0 283.7 ± 55.6 ** 218.5 ± 52.2 NA NA p < 0.05 145 ± 10 -23 ± 18***

Biomarker values are mean ± SD. Urinary (mg/mmol), serum (ng/ml). Urine CTX-1 and osteocalcin are creatinine corrected. NA, not applicable. Ns, not significant
aInsufficient sample volume for quantification in one animal. Single-measurement for bone or cthree samples (insufficient volume for double-measurements). 
dInsufficient sample volume to quantify creatinine in one animal

For U-OC, values < LLOQ were set to nominal LLOQ (57.3 ng/ml) for: Week 3, 1x sample each in DA-sham, DA-OVX, and VRA4-OVX; Week 16, all samples in DA-sham, 
1x sample each in VRA4-sham and DA-OVX, and 3x samples in VRA4-OVX.

For U-OC, values > ULOQ were set to nominal ULOQ (959 ng/ml) for: Week 3, 1x sample each in VRA4-sham and VRA4-OVX groups

For comparisons with corresponding DA-group *P < 0.05, **P < 0.01. For comparisons with VRA4-sham # P < 0.05

See also Supplementary Figs. 1–4

Fig. 1 Summary of femoral bone properties associated with differential expression of Ciita and response to OVX. Panel A. Absolute BMD and BMC values 
(left) and % change (right). Panel B. Cortical shaft cross-sectional area and thickness (left), absolute values and % change (middle) and representative im-
ages of transverse section of the femoral shaft (right) Panel C. Maximum load and flexure extension at break of femoral shaft (left) and % change (right). 
Comparison with corresponding DA (sham/OVX) #p < 0.05, ##p < 0.01, ###p < 0.001, ns, not significant
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in the DA strain following OVX, while decreasing in 
DA.VRA4.

Discussion
This study investigated bone properties in rat strains 
with allelic differences in expression of the Ciita gene, 
encoding the pro-inflammatory protein Ciita. While 
the results should be interpreted with caution, differ-
ential Ciita expression may be associated with changes 
to structural integrity and strength with the low Ciita 
expressing strain (DA.VRA4) displaying lower BMD, 
BMC and cross-sectional area. Other mechanical 
properties reflecting bone strength/stiffness were also 
affected, such that lower energy was required to frac-
ture. Strain differences may also explain differences 
observed following OVX.

In mice Ciita overexpression leads to an osteopenic 
phenotype [6], and indirect induction of Ciita expres-
sion induces bone loss [2]. In post-menopausal women, 
lower CIITA expression associated with increased 
bone mass [7]. However, in this experimental model 
lower Ciita levels appeared to be overall detrimental to 
bone.

Without having performed histomorphometry we 
can only speculate whether this observation is due to 
sample size or reflects the complex negative and posi-
tive feedback loops regulating bone homeostasis. In 
line with our findings, in vitro Ciita over expression in 
murine osteoclasts (responsible for bone resorption) 
decreased osteoclastogenesis, whereas down-regula-
tion (siRNA) enhanced it [16].

The observations from the present study collectively, 
albeit tentatively, suggest that Ciita levels may have a role 
in the skeletal degradation induced by estrogen-deficiency. 
Estrogen is proposedly important in regulating Ciita [17, 
18]. In vitro studies demonstrate estradiol down-regulates 
Ciita expression in breast carcinoma cell lines (reversed by 
anti-estrogens) [18] and indirectly down-regulates Ciita 
expression in macrophages [17]. We can speculate that in 
our model, OVX increased Ciita levels in both strains, since 
the suppressing effect of estrogen was eliminated which is 
in keeping with mice studies, where OVX increased Ciita 
expression, leading to bone loss [2]. Ovariectomy was 
accompanied by decreased BMD and BMC, but the extent 
did not appear to be affected by differences in Ciita expres-
sion. Interpreting the effects on bone strength is hampered 
by the sham group sizes. The lower Ciita expression in 
DA.VRA4 rats may have delayed or reduced negative effects 
of OVX on bone mass, but it is possible the regulatory 
mechanisms differ in early and late post-menopause. Also, 
our knowledge of gene-environment and gene-gene interac-
tions involved in regulating Ciita are limited.

Although using a rat strain with congenitally low Ciita 
expression should more closely represent the natural 

differences in genetic background in humans, compared to 
knock-out models, the study has limitations making it dif-
ficult to do more than tentatively suggest that differential 
Ciita expression is accompanied by altered bone properties.

Limitations
The model does not fully translate to post-menopausal 
osteoporosis and the variation in age at OVX (12–17 weeks) 
makes it difficult to distinguish between effects on bone 
acquisition and bone loss, even if an inflammatory environ-
ment affects bone metabolism. On the other hand, in intact 
mice overexpressing Ciita, bone loss has been observed at 
24 weeks, but not at 6 or 12 [8]. Also, the success of OVX 
was not verified, by uterine weight or estrogen assays.

The low size of the sham groups (premature termina-
tion due to poor clinical condition) is a major limitation, 
not fully offset by the 2 × 2 study design (maximising power 
within this setting) and the very low standard deviation of 
many parameters which enabled post hoc identification of 
apparent differences. Replacing the lost animals would have 
ensured more robust results.

Gene or protein expression levels of Ciita were not mea-
sured, although differential expression of Ciita has been 
well-characterised in these strains, and we assume bone to 
be in line with other tissues. Genetic drift or other genetic 
differences in the two rat models may be possible.

Only femoral properties were assessed; compression tests 
on lumbar vertebrae could add information on trabecular 
bone strength, possibly clarifying why changes were pre-
dominantly observed in cortical but not trabecular bone. 
Additional structural variables, might have helped interpre-
tation, as could in situ cell number and activity.

These acknowledged limitations may explain several par-
adoxical results. In DA rats cortical thickness increased, but 
CSA decreased, despite an unchanged periosteal perimeter 
and appears to conflict with the decreased bone strength 
observed. Additionally, although osteocalcin usually 
decreases following OVX, urinary levels increased.

Conclusion
The study tentatively suggests association between Ciita 
expression and bone structural and mechanical proper-
ties, and possibly response to estrogen deficiency, overall 
supporting a role for inflammation influencing skeletal 
integrity. This highly interesting pathophysiological path-
way warrants exploring in relation to osteoporosis and 
even bone accrual.
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