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Abstract 

Objective This study aimed to identify Key Performance Indicators (KPIs) for men’s swimming strokes using Prin‑
cipal Component Analysis (PCA) and Multiple Regression Analysis to enhance training strategies and performance 
optimization. The analyses included all men’s individual 100 m races of the 2019 European Short‑Course Swimming 
Championships.

Results Duration from 5 m prior to wall contact (In5) emerged as a consistent KPI for all strokes. Free Swimming 
Speed (FSS) was identified as a KPI for ’continuous’ strokes (Breaststroke and Butterfly), while duration from wall 
contact to 10 m after (Out10) was a crucial KPI for strokes with touch turns (Breaststroke and Butterfly). The regression 
model accurately predicted swim times, demonstrating strong agreement with actual performance. Bland and Alt‑
man analyses revealed negligible mean biases: Backstroke (0% bias, LOAs − 2.3% to + 2.3%), Breaststroke (0% bias, 
LOAs − 0.9% to + 0.9%), Butterfly (0% bias, LOAs − 1.2% to + 1.2%), and Freestyle (0% bias, LOAs − 3.1% to + 3.1%). 
This study emphasizes the importance of swift turning and maintaining consistent speed, offering valuable insights 
for coaches and athletes to optimize training and set performance goals. The regression model and predictor tool 
provide a data‑driven approach to enhance swim training and competition across different strokes.

Keywords Competitive swimming, Data analysis, Key performance indicators, Performance prediction, Training 
strategies

Introduction
Competitive swimming encompasses four primary 
techniques: the front crawl or freestyle  (FR), breast-
stroke  (BR), backstroke  (BA), and the butterfly  (BU). 
Swimmers often specialize in specific strokes or dis-
tances, showcasing their expertise in the water [1]. Iden-
tifying Key Performance Indicators (KPIs) for each stroke 

becomes crucial for coaches and athletes to guide train-
ing strategies and optimize performance [2].

It’s evident that KPIs can vary significantly between 
strokes, given the distinct characteristics and techniques 
involved. For example, prior research has revealed dif-
ferent key somatic features of the 4 swimming strokes 
[3, 4]. Further, strokes with alternating arm movements, 
like freestyle and backstroke, may have different KPIs 
compared to those with continuous stroke actions, such 
as the butterfly and breaststroke [5]. Additionally, the 
nuances of turning, (i.e. tumble turn for alternating and 
touch turn for continuous swimming strokes), play a sub-
stantial role in influencing KPIs across different strokes 
[6].

With the ever-evolving landscape of competitive 
swimming and interdisciplinary experts involved 
in the support system, a wealth of performance data 
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accompanies both training and competitions [7]. As 
advancements in technology continue to provide more 
sophisticated race analysis and greater accessibil-
ity to performance data, the challenges of managing 
’big data’ in this field are growing. Despite this, some 
more recent research has used advanced statistical 
techniques in order to model swimming performance 
[8–10]. Furthermore, it is foreseeable that the future 
will bring increased prevalence of automated track-
ing systems and motion sensors integrated with swim-
mers. However, sifting through these data to discern 
its significance can be challenging for coaches and 
athletes. Data reduction techniques, such as Principal 
Component Analyses (PCA), provide a valuable means 
of extracting essential information that explain the 
most significant variances in performance and elimi-
nate redundant variables that capture similar infor-
mation (for more information about PCA please see 
the following reviews [11, 12]). For example, PCA has 
been utilised previously within sports such as swim-
ming [13], skeleton [14] or rugby [15] to help with data 
reduction. When complemented by Multiple Regres-
sion Analysis, these techniques enable the identifica-
tion and comparison of KPIs specific to each stroke.

With these complexities in mind, this study’s primary 
objective is to explore the nuances of men’s swimming 
strokes. By employing data reduction techniques like 
PCA and Multiple Regression Analysis, we aim to achieve 
two key goals. Firstly, we seek to uncover KPIs across 
the four swimming strokes, offering deeper insights into 
each stroke’s unique intricacies. Secondly, our study 
aims to develop a performance prediction tool that can 
be used practically by coaches and athletes to monitor 
performance.

Material and methods
Participants
Participants included all men’s individual 100  m 
races of the 2019 European Short-Course Swim-
ming Championships in Glasgow, Scotland. Races 
included the FR, BA, BR and BU (FR: N = 74; 
swimming points = 782 ± 79; BA: N = 62; swim-
ming points = 801 ± 84; BR: N = 47; swim-
ming points = 826 ± 82; BU: N = 61; swimming 
points = 775 ± 78). All swimmers that participate at 
events hosted by the European Swimming Association 
LEN (Ligue Européenne de Natation) agree to be video 
monitored for television broadcasting and race analy-
sis of the participating nations. The study was pre-
approved by the leading institution’s internal review 
board (registration number: 098-LSP-191119) and 
was in accordance to the latest version of the code of 

conduct of the World Medical Association for studies 
involving human subjects (Helsinki Declaration).

Data collection
A twelve-camera system (Spiideo, Malmö, Sweden) was 
employed to monitor all races. Ten cameras followed 
each individual swimmer and two fixed-view cameras 
monitored the start and turn sections of all swim-
mers. Split times, stroke rate (SR), distance per stroke 
(DPS), and the duration from the starting beep to the 
head passing the 5  m, 10  m, and 15  m marks (start5, 
start10, start15) were post processed by manual digi-
talization by a single assessor who was an expert race 
analyst (Kinovea 0.9.1; Joan Charmant & Contrib., 
https:// kinov ea. org/). Similarly, the duration from 5 m 
prior to the moment of wall contact (in5), the duration 
from the wall contact to the head passing the 5 m after 
the turn (out5), and the duration from the wall contact 
to the head passing the 10 m after the turn (out10) was 
determined for every turn. Free-swimming speed (FSS) 
was calculated from the middle 10  m section of each 
lap from the difference between split time, out10 and 
in5. FSS was not calculated for the first lap given the 
influence of the start on swimming speed. The average 
of each metric was calculated across all laps for each 
race. Reliability of the data analysis has previously been 
determined with an intra-class correlation coefficient of 
0.98 ± 0.04 [16–18].

Development of the potential predictor
A practical tool was developed using Microsoft Excel 
(Additional file 1) further referred to as the Potential Pre-
dictor. The Potential Predictor was designed to utilise the 
identified KPIs for each stroke type allowing coaches to 
estimate race performance times using KPIs and com-
pare athlete performances against predicted outcomes 
based on these thresholds. Race times were categorised 
into distinct classifications based on performance out-
comes: Did Not Qualify (DNQ): swimmers who did not 
progress beyond the heats and did not qualify for any 
further rounds; Qualified (Q): swimmers who success-
fully qualified for either the semi-final (QSF) or the final 
(QF); Medallists (M): swimmers who achieved podium 
positions and won medals in their respective events. 
Mean swimming time and KPIs for the performance clas-
sifications for all stroke types are displayed in Additional 
file 2: Table S1. To use this tool effectively, coaches should 
carefully consider the specific KPIs associated with each 
stroke type. These KPIs should be collected under opti-
mal conditions, such as selecting the best results from 
multiple trials. Subsequently, these gathered KPIs can 
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be entered into the Potential Predictor to ascertain an 
individual swimmer’s potential along with the lower and 
upper 95% LOA. Coaches can manipulate one or more 
KPIs to assess their impact on future race outcomes.

Statistical analyses
To assess variables with a high degree of covariance 
(≥ 0.8), a covariance matrix was computed for all 
z-scored data. A Principal Component Analysis (PCA) 
was conducted on all variables with high covariances. 
The Kaiser–Meyer–Olkin measure was used to verify 
the sampling adequacy of the data, with a value of 0.5 
used as a threshold for acceptability [19]. The Bartlett 
test of sphericity was also used to determine the suita-
bility of the data for PCA, with significance accepted at 
an α level of P ≤ 0.05. Principal Components (PCs) with 
Eigenvalues greater than 1 were extracted. Orthogonal 
rotation (varimax) was used to improve the identifica-
tion and interpretation of factors [20]. The most heavily 
loaded (most strongly related) variable to each compo-
nent were then retained, along with the original vari-
ables which did not display a high degree of covariance, 
to be used as predictors for swim time (criterion) in a 
stepwise multiple linear regression analysis. Entered 
variables remained in the model if a significant  R2 
change (P < 0.05) was reported and the unstandardized 
β coefficients were used to form the prediction equa-
tions. The agreement between the predicted and actual 
swimming performances, along with the 95% limits of 

agreement (LOA), were subsequently analysed using 
methods described by Bland and Altman [21]. All sta-
tistical analyses were performed using SPSS Statistics 
(Version 29; IBM Corporation, NY).

Results
PCA revealed two PCs with Eigen values > 1 for all swim-
ming strokes. The variables which had the highest com-
ponent loadings to each PC are displayed in Table 1. PC1 
was most strongly correlated with Start15 for the Free-
style, Start10 for the Backstroke and Out10 for both the 
Breaststroke and Butterfly. PC2 was most strongly corre-
lated with SR from the Freestyle, Backstroke and Butter-
fly and with Start10 for the Breaststroke.

Stepwise multiple linear regressions revealed the 
KPIs for each stroke type. The unstandardized β coeffi-
cients were then used to form the following regression 
equations:

SwimTime_FR = 12.194 + 4.633 ∗ Start15+ 3.330 ∗ in5

SwimTime_BA = 4.997+ 3.416 ∗ Start15+ 8.337 ∗ in5

SwimTime_BR

= 40.415+ 4.671 ∗ in5

+ 4.372 ∗ out10−13.346 ∗ FSS

Table 1 The two principal components (PCs) of the Varimax rotated component matrix for all swimming strokes and their explained 
variance

Cells marked with *** represent variables that did not have high covariances and therefore were not included in the PCA, but were included in the subsequent 
stepwise linear regression. For better visualisation, only component loadings ≤ − 0.7 or ≥ 0.7 are displayed. Bold figures indicate the strongest component loading 
(those with the highest correlation to the principal component) and the metric that was retained to be used within the subsequent stepwise linear regression. FR 
Freestyle, BA Backstroke; BR Breaststroke, BU Butterfly

FR BA BR BU

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Variance explained (%) 63.7 82.5 65.8 84.9 47.5 71.4 65.6 83.5

DPS − 0.931 − 0.962 − 0.876

SR 0.982 0.964 0.973
FSS − 0.867 − 0.841 *** *** *** ***

Start5 *** *** *** *** *** ***

 Start5to10 0.863 0.915 0.781 0.863

 Start10 0.894 0.926 0.819 0.859

 Start10to15 0.806 0.87 0.801 0.851

 Start15 0.956 0.969 0.866 0.93

In5 *** *** *** *** *** *** *** ***

 Out5 0.832 0.791 0.87 0.701

 Out5to10 0.849 0.926 0.875 0.891

 Out10 0.935 0.966 0.952 0.936
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The results Bland and Altman plots indicate a con-
sistently very strong agreement between predicted and 
actual swimming performance for all strokes, with a 
mean bias of 0% (Fig.  1). Specifically, for BA, the mean 
bias was -0.001% with 95%LOAs from −  2.3 to + 2.3% 
(or −1.2 to + 1.2  s; Fig.  1A). For BR, the mean bias was 
-0.001% with 95% LOAs from −  0.9 to + 9.9% (or −  0.5 
to + 0.5  s; Fig.  1B). For BU, the mean bias was 0.003% 
with 95% LOAs from − 1.2 to + 1.2% (or − 0.6 to + 0.6 s; 
Fig. 1C) and for FR, the mean bias was 0.02% with 95% 
LOAs from − 3.1 to + 3.1% (or − 1.5 to + 1.5 s; Fig. 1D).

SwimTime_BU

= 30.948+ 5.050 ∗ in5

+ 4.358 ∗ out10−8.358 ∗ FSS

Discussion
This study sought to uncover KPIs across various swim-
ming strokes using data reduction techniques and mul-
tiple regression. The main findings of this study were: (1) 
in5 was identified as a KPI for all strokes; (2) FSS was a 
KPI for the ‘continuous’ swimming strokes (Breaststroke 
& Butterfly) but not for the ‘alternating’ strokes (Freestyle 
& Backstroke); (3) Out10 was identified as a KPI for the 
strokes involving a touch turn (Breaststroke and the But-
terfly); and (4) the regression model provides a reliable 
method to predict swim time based on the underlying 
KPIs.

One of the central findings of this research is the con-
sistent identification of in5 as a KPI for all four swim-
ming strokes. The last 5  m leading up to the wall (in5) 

Fig. 1 Bland and Altman plots with 95% limits of agreement displaying the agreement between predicted and actual swim time for the Freestyle 
(Panel A), Backstroke (Panel B), Breaststroke (Panel C) and Butterfly (Panel D) freestyle races
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are intrinsically linked to FSS and holds particular sig-
nificance in Freestyle and Backstroke, where in5 encap-
sulates the critical aspects of the tumble turn. Precisely 
timing the initiation and optimizing rotation velocity 
within these last 5 m significantly influences the outcome 
of in5 [22]. As such, these findings underscore the critical 
role of swift swimming speeds for all swimming strokes, 
but also efficient timing of tumble turns for the Freestyle 
and Backstroke for optimising performance. These find-
ings extend prior research that has demonstrated the 
importance of fast turning for optimal performance in 
short-course swimming [16–18]. Although, swimmers 
perform numerous turns during their daily training rou-
tine [23], coaches should place particular attention to 
race pace specific turns in order to optimize timing dur-
ing the wall approach.

While in5 is associated with FSS as swimmers approach 
the pool wall, it’s noteworthy that for ’continuous’ swim-
ming strokes like Breaststroke and Butterfly, FSS, along-
side in5, emerged as a significant KPI. This finding 
underscores the difference in KPIs between ’continuous’ 
swimming strokes (Breaststroke and Butterfly) and ’alter-
nating’ strokes (Freestyle and Backstroke). In essence, 
it suggests that these variations in KPIs align with the 
inherent differences in these distinct swimming tech-
niques. Recognizing FSS as a KPI for continuous swim-
ming strokes is consistent with earlier research showing 
the impact of intra-cyclic variation in horizontal velocity 
on overall swimming speed [5]. These findings collec-
tively emphasize the importance of maintaining consist-
ent speed and minimizing ’breaking forces,’ especially 
in Breaststroke and Butterfly. In contrast, Freestyle and 
Backstroke generally exhibit lower intra-cyclic variation 
in horizontal velocity [5], potentially making FSS less dis-
tinguishing for overall swimming performance, at least in 
the 100 m event.

In strokes involving a touch turn, namely Breaststroke 
and Butterfly, our analysis has identified Out10 as a KPI. 
This further underscores the vital role of quick and effi-
cient turning in optimizing performance for short-course 
swimming. Specifically, in the context of touch turns, 
Out10 encompasses a 180-degree body rotation following 
the initial wall contact. Furthermore, the recognition of 
Out10 as a KPI underscores the importance of a powerful 
push-off from the wall during the turn. Past research has 
already established the significance of tailored strength 
and conditioning programs on land to enhance the push-
off from the pool wall and gain a competitive advantage 
[24]. Moreover, mastering undulating kicking is a crucial 
skill for preserving maximum velocity from the push-off 
during the underwater phase [25]. Coaches and athletes 
can leverage this knowledge to refine training strategies 

and technique development, ultimately paving the way 
for enhanced performance.

The regression model effectively predicts swim times 
based on identified KPIs, aiding coaches and athletes in 
informed decision-making, goal setting, and personal-
ized training plans. Incorporating individual perfor-
mance data into the model offers insights into factors 
influencing swim times and rankings. The 95% Limits of 
Agreement (LOAs) define performance range, guiding 
the understanding of prediction variability. Coaches and 
athletes must consider these LOAs to assess acceptable 
variability. It’s notable that the freestyle race has wider 
LOAs, signifying lower prediction accuracy. This infor-
mation empowers coaches and athletes to make informed 
decisions and adjustments in their training approaches, 
especially in cases where predictive certainty may be 
lower, such as in freestyle races.

In conclusion, this study has unveiled essential insights 
into the performance determinants for men’s swimming 
strokes, revealing the unique intricacies of each stroke 
and identifying specific KPIs. Specifically, the study high-
lights the importance of swift turning across all strokes 
and minimising speed variations and swimming effi-
ciency, in particular for continuous swimming strokes, as 
well as a powerful push from the wall when turning. The 
regression model and predictor tool empower coaches 
and swimmers with the knowledge of KPIs and the ability 
to predict 100 m race times across different strokes.

Limitations

• The KPIs identified in this study are based solely on 
their statistical significance using the specific statisti-
cal methods employed in this study.

• This does not imply that other metrics or variables 
are insignificant in achieving successful performance.

• A holistic approach still considers multiple factors for 
comprehensive evaluation.

• KPIs cannot be assessed independently. Larger effort 
put into one race section may interfere with perfor-
mance in another phase of the race.

• The data set and predictor tool only provide data for 
short-course races and should be expanded to long-
course races.

Abbreviations
BA  Backstroke
BR  Breaststroke
BU  Butterfly
DPS  Distance per stroke
FR  Freestyle
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FSS  Free Swimming Speed
In5  The duration from 5 m prior to the moment of wall contact
KPIs  Key performance indicators
LOA  Limits of agreement
PCA  Principal component analysis
Out5  The duration from the wall contact to the head passing the 5 m 

after the turn
Out10  The duration from the wall contact to the head passing the 10 m 

after the turn
SR  Stroke Rate
Start5  The duration from the starting beep to the head passing the 5 m 

mark
Start10  The duration from the starting beep to the head passing the 10 m 

mark
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