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Abstract
O-GlcNAcylation is a nutrient-sensing post-translational modification process. This cycling process involves two 
primary proteins: the O-linked N-acetylglucosamine transferase (OGT) catalysing the addition, and the glycoside 
hydrolase OGA (O-GlcNAcase) catalysing the removal of the O-GlCNAc moiety on nucleocytoplasmic proteins. 
This process is necessary for various critical cellular functions. The O-linked N-acetylglucosamine transferase (OGT) 
gene produces the OGT protein. Several studies have shown the overexpression of this protein to have biological 
implications in metabolic diseases like cancer and diabetes mellitus (DM). This study retrieved 159 SNPs with 
clinical significance from the SNPs database. We probed the functional effects, stability profile, and evolutionary 
conservation of these to determine their fit for this research. We then identified 7 SNPs (G103R, N196K, Y228H, 
R250C, G341V, L367F, and C845S) with predicted deleterious effects across the four tools used (PhD-SNPs, SNPs&Go, 
PROVEAN, and PolyPhen2). Proceeding with this, we used ROBETTA, a homology modelling tool, to model the 
proteins with these point mutations and carried out a structural bioinformatics method– molecular docking– using 
the Glide model of the Schrodinger Maestro suite. We used a previously reported inhibitor of OGT, OSMI-1, as the 
ligand for these mutated protein models. As a result, very good binding affinities and interactions were observed 
between this ligand and the active site residues within 4Å of OGT. We conclude that these mutation points may be 
used for further downstream analysis as drug targets for treating diabetes mellitus.
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Introduction
The human O-linked N-acetylglucosamine transfer-
ase (OGT) gene is ∼43  kb long. Located at the Xq13.1 
genomic locus, it is alternatively spliced to generate 
nucleocytoplasmic (nc), mitochondrial (m), and short 
(s) isoforms. The varying number of tetratricopeptide 
repeats (TPRs) in their N-terminal domains distinguishes 
these isoforms. The full-length human nucleocytoplasmic 
OGT isoform (∼110 kDa) contains 13 TPRs, while mito-
chondrial OGT (∼103  kDa) and short OGT (∼75  kDa) 
contain 9 and 3 TPRs, respectively [1, 2]. The OGT gene 
encodes the OGT protein.

Protein O-GlcNAc transferase (OGT) adds the GlcNAc 
moiety to cytoplasmic and nuclear proteins’ threonine 
and serine residues. Because it is involved in cell signal-
ling, glucose homeostasis in the liver, and regulating the 
clock genes’ circadian oscillation, its absence is lethal in 
mice [3, 4]. Torres and Hart discovered it about 30 years 
ago [5], and it is linked to x-linked intellectual disability 
and insulin resistance in muscle and adipocyte cells when 
mutated [6, 7]. Its contribution to glucose metabolism via 
the Hexosamine Biosynthesis Pathway directly links it to 
diabetes mellitus [8, 9].

Diabetes mellitus (DM) is a metabolic disorder that 
comes in two forms: T1DM and T2DM. The defective 
secretion of insulin causes T1DM, while T2DM is caused 
by a defect in insulin action [10]. Diabetes is caused by 
a variety of factors, including but not limited to lifestyle, 
genetics, and diet. Diabetes is estimated to kill 6.7  mil-
lion people worldwide in 2021, with 537  million adults 
living with the disease, a figure that is expected to rise to 
783 million by 2045 [11].

Non-synonymous single nucleotide polymorphisms 
(nsSNPs) are protein amino acid substitutions [12]. As 
a result, this study aims to identify disease-causing and 
deleterious SNPs within the OGT gene and druggable 
targets to discover therapeutic drugs for diabetes mel-
litus via this gene. To obtain an unbiased outcome, it is 
sensible to evaluate the detrimental prediction of various 
sequence-and structure-based tools, many of which have 
different methodologies for variant classification. The 
likelihood of a SNP being harmful is high if it is projected 
to be so by the several different predictive tools that use 
different methodologies. However, the performance, pre-
cision, and accuracy of the in-silico biological and clinical 
predictions can be improved by combining different in-
silico methods or tools.

Materials and methods
Data retrieval for single nucleotide polymorphisms
The OGT variants and SNPs were retrieved from the 
National Centre for Biotechnology Information’s (NCBI) 
dbSNPs server [14]. The SNPs were chosen based on 
their clinical significance, as reported by ClinVar [15].

Investigating the functional effects of coding nsSNPs
The deleterious potential of the OGT nsSNPs was 
assessed using four significant tools: Predictor of Human 
Deleterious Single Nucleotide Polymorphism (PhD-SNP) 
[12], SNPs&Go [16], PROVEAN v1.1 [17], and Polymor-
phism Phenotyping v2 (Polyphen) [18]. SNPs&GO is an 
algorithm that predicts deleterious nsSNPs based on pro-
tein functional annotation. PHD-SNP is an online tool 
for predicting point mutations in protein sequences and 
determining the impact of these mutations [19]. The pro-
gram predicts how the single-point amino acid change 
will cause disease. PROVEAN predicts changes in a pro-
tein’s biological functions caused by single amino acid 
substitutions, and a score of less than − 2.5 is predicted 
to be harmful.

Analysis of protein stability of predicted OGT nsSNPs
The i-Stable 2.0 server, which includes tools such as 
iPTREE-STAB, I-Mutant 2.0, and MUpro, was used to 
predict the structure-function relationship of the SNPs 
[20]. The i-Mutant tool calculates the Gibbs free energy 
for the wild-type protein and subtracts it from the mutant 
form to estimate the free energy changes. The predicted 
values of all OGT mutant types may alter protein stability 
with associated free energy. Positive DDG values indicate 
that the mutated proteins are highly stable, whereas neg-
ative scores indicate less stable [21].

Analysis of the evolutionary conservation of amino acids
The Consurf program investigates the evolutionary con-
servation of OGT amino acids. It uses a Bayesian method 
to determine the conserved amino acids to identify the 
structural and functional residues in the conserved 
regions [22]. The prediction of the amino acids is into 
a variable (range between 1 and 4), intermediate (range 
between 5 and 6), and conserved (range between 7 and 9) 
based on their scores and colour indications [23].

Protein modelling and molecular docking
Using the protein sequence retrieved from the UniProt 
database, we used the ROBETTA homology modelling 
tool to predict the 3D structure of the OGT apo-protein 
[24]. The predicted structure was viewed using the Schro-
dinger Maestro v11.1 workspace and validated using the 
Verify-3D and ERRAT programs available in the SAVES 
server [25]. Schrodinger-Maestro v11.1’s Protein Prepa-
ration Wizard module was used to preprocess, optimise, 
and minimise the crystal structure of OGT. While keep-
ing the pH at 7, structural water molecules were kept 
to ensure protein stability, while redundant water mol-
ecules were removed to facilitate protein-ligand binding. 
Hydrogens were also added to fill the gaps and mediate 
hydrogen bridges and electrostatic forces [26]. We used 
the SiteMap feature of the Schrodinger Maestro software 
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to identify potential binding pockets on the OGT pro-
tein [27]. The generation of receptor grids was expedi-
ent to limit ligand docking to only the identified binding 
pockets [28]. The grid box had dimensions of x = -32.724, 
y = 51.454, and z = 83.332. The PubChem database was 
used to retrieve the 2D structure of OSMI-1, a small mol-
ecule inhibitor of OGT [29]. The OSMI-1 was prepared 
and converted to its 3D geometry prior to molecular 
docking using the LigPrep module of Maestro v.11.1 [30].

Results
nsSNPs obtained from the dbSNPs database
The discovery of disease-causing nsSNPs helps develop 
candidate drug therapy because they are biological mark-
ers involved in disease occurrence or progression [31, 
32]. The NCBI server yielded 159 nsSNPs [33]. According 

to ClinVar, the retrieval favoured only SNPs with clinical 
significance [15].

Identification of damaging nsSNPs in OGT
We used four (4) tools to predict the potential deleteri-
ousness of 25 nsSNPs, with at least three (3) of the four 
(4) tools predicting a negative effect (Table 1). PROVEAN 
predicted seven (7) nsSNPs to be harmful, and using 
the PolyPhen-2 tool, all seven (7) nsSNPs were prob-
ably harmful, with scores ranging from 0.932 to 1.000. 
SNPs&GO and PhD-SNP both predicted diseased SNPs. 
The total number of deleterious SNPs was reduced to 
7 based on their detrimental effect across all four tools 
(Table 2).

Table 1 Damaging nsSNPs from OGT
S/N rsID AA Change/position PROVEAN PhD-SNPs SNPs&GO PolyPhen2
1 rs766646613 R627C -4.677 Deleterious Disease RI-2 Neutral 0.999 probably damaging
2 rs131705060 R117C -4.194 Deleterious Disease RI-1 Disease RI-1 0.932 probably damaging
3 rs204042438 P879L -9.041 Deleterious Disease RI-6 Neutral 0.942 probably damaging
4 rs204039392 P685Q -7.872 Deleterious Neutral Disease RI-4 0.994 probably damaging
5 rs204042400 R867C -5.399 Deleterious Disease RI- 1 Neutral 0.994 probably damaging
6 rs204034593 A380V -3.790 Deleterious Neutral Disease RI-4 0.938 probably damaging
7 rs766646613 R627C -4.677 Deleterious Disease RI-2 Neutral 0.999 probably damaging
8 rs2040347448 M401T -4.727 Deleterious Disease RI-2 Neutral 0.998 probably damaging
9 rs2040347668 C417Y -8.596 Deleterious Neutral Disease RI-1 0.989 probably damaging
10 rs2040350890 D481G -4.340 Deleterious Disease 1 Disease RI-2 benign
11 rs2040368778 H611N -5.952 Deleterious Disease 2 Neutral 0.55 probably damaging
12 rs2040387073 P657L -9.335 Deleterious Neutral Disease RI-6 0.924 probably damaging
13 rs2040191136 Y112S -7.489 Deleterious Neutral Disease RI-7 0.973 probably damaging
14 rs2040329106 Y228H -2.680 Deleterious Disease 5 Disease RI-0 0.997 probably damaging
15 rs2040334939 R250C -6.093 Deleterious Disease 3 Disease RI-3 1.000 probably damaging
16 rs2040341169 G341V -7.294 Deleterious Disease RI-3 Disease RI-3 0.991 probably damaging
17 rs2040345810 L367F -3.717 Deleterious Disease 1 Disease RI-1 0.999 probably damaging
18 rs2040190682 R102G -4.116 Deleterious Neutral Disease RI-1 0.930 PROBABLY DAMAGING
19 rs2040334968 R250L -5.405 Deleterious Disease 2 Disease RI-0 1.000 probably damaging
20 rs772525369 R899C -6.682 Deleterious Disease RI-0 Disease RI-2 1.000 probably damaging
21 rs1114167891 R284P -4.060 Deleterious Disease 6 Disease RI-6 0.951 probably damaging
22 rs1556046834 G103R -5.717 Deleterious Disease 5 Disease RI-6 0.993 probably damaging
23 rs1602152230 N648Y -7.605 Deleterious Disease 6 Disease RI-0 0.998 probably damaging
24 rs2040405196 C845S -7.654 Deleterious Disease 3 Disease RI-3 0.930 probably damaging
25 rs200109331 N196K -4.599 Deleterious Disease 5 Disease RI-5 1.000 probably damaging

Table 2 Predicted deleterious nsSNPs across the four tools
S/N rs ID AA Change/Position PROVEAN PhD-SNPs SNPs&GO PolyPhen2
1 rs2040329106 Y228H -2.680 Deleterious Disease 5 Disease RI-0 0.997 PROBABLY DAMAGING
2 rs2040334939 R250C -6.093 Deleterious Disease 3 Disease RI-3 1.000 PROBABLY DAMAGING
3 rs2040341169 G341V -7.294 Deleterious Disease RI-3 Disease RI-3 0.991 PROBABLY DAMAGING
4 rs2040345810 L367F -3.717 Deleterious Disease 1 Disease RI-1 0.999 PROBABLY DAMAGING
5 rs2040405196 C845S -7.654 Deleterious Disease 3 Disease RI-3 0.930 probably damaging
6 rs1556046834 G103R -5.717 Deleterious Disease 5 Disease RI-6 0.993 PROBABLY DAMAGING
7 rs200109331 N196K -4.599 Deleterious Disease 5 Disease RI-5 1.000 PROBABLY DAMAGING
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Protein stability profile prediction for nsSNPs in OGT
The iStable 2.0 tool predicted protein stability [34]. All 
seven highly deleterious SNPs were also predicted to 
reduce OGT protein stability. The results of MUpro SVM, 
MUpro MM, I-Mutant 2.0, and iPTREE-STAB are shown 
in Table 3.

Conservation prediction of damaging nsSNPs in OGT
Consurf predicted that Y228H, C845S, and L367F would 
be buried and conserved, whereas G103R, N196K, 
R250C, and G341V would be exposed and conserved 
(Table 4).

OGT structural characterisation of wild and mutant types 
in comparison
ERRAT and Verify-3D were used to validate the protein 
structure (Fig.  1). According to the Verify-3D results, 
94.39% of the residues have an average 3D-ID score of 
0.2. (Fig.  2a). The Ramachandran plot, which is avail-
able in PROCHECK, was used to assess the quality of 
the 3D protein structure (Fig. 2b). According to the plot, 
91.3%, 8.0%, 0.3%, and 0.3% of the residues are in the 
favoured, allowed, generously allowed, and disallowed 
regions, respectively (Fig. 2c). This confirms the protein 
structure’s high quality. ERRAT also demonstrated an 
overall quality factor of 98.7161 (Fig.  2d), implying that 
the results obtained from the tools, as mentioned earlier, 
indicated that our modelled protein is of high quality and 
can be used for further investigation.

OGT Mutant type as a potential drug target
The Glide module of the Schrödinger Maestro Suite was 
used to investigate the protein-ligand binding affinity of 
OSMI-1 and the OGT protein. OSMI-1 interacted well 
with the active site residues of OGT, and the docking 
scores for each interaction are shown in Table  5. These 
predictions can be validated using additional down-
stream analysis.

Discussion
OGT gene has emerged as the candidate gene associated 
with diabetes mellitus [35]. However, the relationship is 
complex and requires consideration of various factors. 
Several important functional regulatory factors, includ-
ing SNPs, may significantly impact disease metabolism. 
Utilising publicly available data, we discovered seven del-
eterious SNPs associated with the OGT gene. Addition-
ally, we examined the functional consequences of these 
SNPs, conservation analysis, protein-protein interaction 
network studies, and protein stability. The OGT gene is 
crucial in diverse cellular processes, including metabo-
lism, insulin signalling, and stress response. Due to their 
potential effects on protein structure and function and, 
eventually, cellular processes involved in glucose metab-
olism and insulin signalling, deleterious single nucleo-
tide polymorphisms (SNPs) in the OGT gene may have 
a major impact on diabetes. Our study shows that only 
the mutation points in G103R, Y228H, R250C, C845S, 
G341V, N196K, and L367F were found to be harmful 
across all four tools used, out of the 25 deleterious nsS-
NPs identified.

Table 3 nsSNPs stability profiling
S/N SNPs AA Change I-Mutant2.0 SEQ MUpro_SVM MUpro_NN iPTREE-STAB
1 rs2040329106 Y228H Decrease Decrease Decrease Decrease
2 rs2040334939 R250C Decrease Increase Increase Decrease
3 rs2040341169 G341V Decrease Decrease Increase Decrease
4 rs2040345810 L367F Decrease Decrease Decrease Decrease
5 rs2040405196 C845S Decrease Decrease Decrease Decrease
6 rs1556046834 G103R Decrease Increase Increase Decrease
7 rs200109331 N196K Decrease Decrease Decrease Decrease

Table 4 ConSurf result output
S/N Amino acid 

change
Pos Seq Score Colour Confidence 

interval
Confidence 
interval 
colours

B/e Function Msa data Residue variety

1 G103R 103 G -0.148 6 -0.417, 0.041 7,5 e 122/150 G, N, A, V
2 N196K 196 N -0.805 9 -0.861, -0.777 9,9 e f 127/150 N, Y, S
3 Y228H 228 Y -0.218 6 -0.417, -0.080 7,5 b 126/150 Y, L, H, F
4 R250C 250 R -0.104 6 -0.350, 0.041 7,5 e 143/150 K, R, E, S, T, N, H, 

Q, A
5 C845S 845 C -0.077 9 -0.272, 0.041 9,9 b S 147/150 Q, H, Y, T, E, S, K, R
6 G341V 341 G -0.703 9 -0.799, -0.660 9,8 e f 147/150 S, G, C, N
7 L367F 367 L -0.78 9 -0.849, -0.752 9,9 b S 146/150 I, Y, L
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Furthermore, we characterised the identified SNPs 
based on their stability. Protein stability is essential for 
maintaining these functions. Meanwhile, unstable pro-
teins are more susceptible to degradation by cellular 
machinery, reducing OGT levels and activity. A protein’s 
function is determined by changes in its conformational 
structure, which is influenced by changes in protein sta-
bility [36]. Our study shows that the protein stability of 
the OGT gene is impacted by the identified nsSNPs, 
which may negatively impact the protein’s structure and 
function. Decreased protein stability can alter how pro-
teins fold, leading to abnormal protein aggregation or 
increased degradation [37].

Based on similarity and homology data, Consurf cal-
culates the evolutionary profile of proteins and the 
effects of amino acid substitutions [23]. The evolution-
ary profiling of the OGT SNPs predicted all seven to be 
located in the conserved region. Y228H, G103R, N196K, 
R250C, G341V, L367F, and C845S amino acids sub-
stitute for rs2040329106, rs1556046834, rs200109331, 
rs2040334939, rs2040341169, rs2040345810 and 
rs2040405196 (Table 4). SNPs in these areas can signifi-
cantly alter protein structure and function, potentially 
leading to disease or altered phenotype [38]. It empha-
sises its potential significance for understanding disease 

mechanisms and developing novel therapeutic strategies. 
Conserved regions often encode crucial parts of proteins, 
like active sites or binding pockets. Because the nsSNPs 
were found in a conserved region, a change in the amino 
acid sequence in those regions will affect the structural 
and functional profile of the OGT protein.

Our molecular docking analysis indicated that all 
docking scores vary between the mutants, ranging 
from − 4.546 to -5.563, suggesting differential binding 
strengths. The higher the score, the stronger the pre-
dicted binding affinity (Table 5) [39]. Overall, our dock-
ing results provide valuable insight into the potential 
impact of OGT mutations on OSMI-1 binding. Further 
experimental validation and functional analysis are cru-
cial for conclusively understanding their effects on OGT 
activity and biological significance.

The current study’s strength lies in using various algo-
rithms to obtain precise prediction results for the identi-
fied nsSNPs. These could be used as druggable reference 
points to discover drugs to treat diabetes mellitus. There 
is a need to investigate more reliable in-vitro and in-vivo 
investigations to corroborate these results. A significant 
limitation of this work, like other in-silico studies, is that 
all of the processes employed to predict the impact of the 
SNPs are computer-based.

Fig. 1 The Hexosamine Biosynthesis pathway promotes protein O-GlcNAcylation by supplying the O-GlcNAc moiety for addition and removal on nuclear 
and cytoplasmic proteins [13]
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Conclusions
The OGT protein has been linked to the progression of 
diabetes mellitus because it catalyses the addition of the 
o-GlcNAc sugar moiety on nucleocytoplasmic proteins, 
a substrate of the hexosamine biosynthesis pathway, 
increasing the amount of intracellular glucose content. 
In this study, 159 OGT nsSNPs in coding regions were 
chosen, and structural analysis of the seven nsSNPs pre-
dicted a negative impact on protein function and stabil-
ity. The findings indicated that nsSNPs could be used in 
drug development for diabetes mellitus.
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