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Mice lacking the Cb subunit of PKA are resistant
to angiotensin II-induced cardiac hypertrophy
and dysfunction
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Abstract

Background: PKA is a ubiquitous, multi-subunit cellular kinase that regulates a number of different physiological
responses in response to cAMP, including metabolism, cell division, and cardiac function. Numerous studies have
implicated altered PKA signaling in cardiac dysfunction. Recently, it has been shown that mice lacking the catalytic
b subunit of PKA (PKA Cb) are protected from age-related problems such as weight gain and enlarged livers, and
we hypothesized that these mice might also be resistant to cardiomyopathy.

Findings: Angiotensin II (ang II) induced hypertension in both PKA Cb null mice and their WT littermates.
However, PKA Cb null mice were resistant to a number of ang II-induced, cardiopathological effects observed in
the WT mice, including hypertrophy, decreased diastolic performance, and enlarged left atria.

Conclusion: The Cb subunit of PKA plays an important role in angiotensin-induced cardiac dysfunction. The Cb
null mouse highlights the potential of the PKA Cb subunit as a pharmaceutical target for hypertrophic cardiac
disease.

Background
PKA is a ubiquitous cellular kinase that is involved in
regulating a vast number of different cellular processes.
Several studies have implicated altered PKA signaling in
cardiomyopathy [1,2]. For example, the onset of cardiac
hypertrophy is influenced by alterations in muscle-specific
A-kinase Anchoring Protein (mAKAP) signaling in myo-
cytes. AKAPs subcellularly localize and modulate interac-
tions between PKA and its downstream targets [3].
Deficiencies in the PKA pathway have also been linked
both to cardiomyopathy in humans due to reduced phos-
phorylation of downstream targets such as cardiac tropo-
nin I [4], and to preservation of cardiac function against
pressure overload in mice [5,6].
PKA is a tetrameric protein, consisting of two regula-

tory subunits and two catalytic subunits. Binding of
cAMP to the regulatory subunits releases the catalytic
subunits, which are then free to interact with and phos-
phorylate downstream targets. There are four isoforms
of the regulatory subunit (RIa, RIb, RIIa, RIIb) and

three types of catalytic subunits (Ca, Cb, Cg) [7,8]. C57/
BL6J male mice lacking the regulatory RIIb subunit have
been found to be resistant to a number of age-related
pathologies, including cardiac hypertrophy and decline
[9]. We are currently studying mice lacking the PKA
catalytic Cß subunit to establish whether they also enjoy
age-delaying benefits. To date, we know that when chal-
lenged with a high fat, high calorie diet, these mice
show robust obesity resistance, dramatic fat sparing
effects in the liver, and protection against insulin resis-
tance [10].
Cardiac hypertrophy is an increase in the mass of the

heart in response to and to compensate for an increased
workload. In the face of continued stress, hypertrophied
diastolic and eventually systolic properties of the left
ventricle become impaired, leading to decompensation
and heart failure [11]. Angiotensin (ang) II is the effec-
tor of the renin-angiotensin system (RAS), and increases
blood pressure by causing potent vasoconstriction
through stimulation of angiotensin receptors in the vas-
cular system [12]. We used ang II to administer a hyper-
tensive challenge to the hearts of PKA Cb null mice in
order to establish whether or not they were protected
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against pressure overload-induced cardiac hypertrophy
and dysfunction.

Methods
PKA Cb null mice lack expression of all PKA Cb iso-
forms [13]. Mice were backcrossed to congenicity on a
C57BL/6J background and genotypes were identified
with PCR, both as previously described [10]. Seven each
of 7 month-old, male PKA Cb null mice and their WT
littermates were surgically implanted with subcutaneous
osmotic minipumps (model 1004; Alzet, Cupertino CA),
to deliver a dosage of 0.7 mg/kg/day of Val5-angiotensin
II (H1750; Bachem, Torrance CA) for 28 days. Blood
pressures were measured before and after angiotensin
treatment using the Coda-6 VPR tail cuff system (Kent
Scientific, Torrington CT) [14,15] on conscious mice, as
previously described, [16]. Non-invasive echocardiogra-
phy and Doppler imaging were used before and 34 days
after implantation of the minipumps to assess left ven-
tricular mass, left atrial size, the velocity of the mitral
valve annulus, isovolumic contraction and relaxation
and ejection times, and the ratio of early to late diastolic
filling (Ea/Aa). At the end of the experiment, ang
II-treated mice were euthanized and their hearts
weighed and compared with heart weights from another
cohort of similarly aged, unchallenged mice. Probabil-
ities of difference between groups were calculated using
the Student’s T-test; P’s < 0.05 were considered to be
statistically significant and are included in figures. All
protocols were approved by the University of Washing-
ton Institutional Animal Care and Use Committee.

Results
PKA Cb null mice are resistant to angiotensin-induced
cardiac hypertrophy and dysfunction
Previous experiments have shown that insertion of
subcutaneous saline pumps into mice, using our method
does not produce any cardiovascular effects (data not
shown). Four weeks of treatment with pumps containing
angiotensin II caused a systolic and diastolic blood pres-
sure increase of 25 and 50%, and 35 and 36%, for WT
and PKA Cb null mice, respectively (figure 1). Signifi-
cant differences in blood pressure were not found
between genotypes, either before or after ang II treat-
ment. Echocardiography and Doppler imaging show
similar cardiac performance between unchallenged, 7
month-old PKA Cb null mice and their WT littermates
(data not shown); however, when challenged with angio-
tensin II, compared to WT, mutants were found to be
resistant to cardiac dysfunction in 4 of the 5 parameters
measured (figure 2). Mutants displayed only a 60%
increase in left ventricular mass index compared to over
100% in the WT. WT mice also showed significant
decreases in fractional shortening of the left vetricle,

compared to their mutant littermates which showed no
decreases at all. The left atrium of the WT hearts,
showed, on average, a significantly larger increase in size
in response to ang II, reflected by a 25% decrease in the
average aorta/left atrium ratio (AO/LA) compared to no
change in the mutants. The ratio of early to late diasto-
lic filling (Ea/Aa) decreased by over 40% in WT com-
pared to about 10% in mutants, indicating significantly
worse diastolic dysfunction. The only parameter equally
affected in both genotypes was mass performance index
(MPI). Results from echocardiography showing differ-
ences between genotypes in ang II-induced hypertrophy
were confirmed upon euthanization of the mice.
Unchallenged PKA Cb null and WT mice had similar
heart weights of about 0.15 g. After 28 days of ang II
treatment, however, the hearts of WT mice were 38%
larger, while PKA Cb null hearts showed a significantly
smaller increase of only about 17% (figure 3A). The dif-
ference in heart size between genotypes of ang II treated
mice was clearly visible (figure 3B).

Discussion
We show that disruption of the PKA catalytic subunit
Cb protects mice from angiotensin II-induced cardiac
hypertrophy and dysfunction. In this study, a low dosage
of angiotensin II (ang II) was used to effectively induce
hypertension in WT, C57BL/6J mice and their PKA Cb
null littermates. After being challenged for 4 weeks with
ang II, both genotypes showed a similar hypertensive
response. In spite of similar systolic and diastolic blood
pressure increases in response to ang II compared to

Figure 1 Angiotensin II causes hypertension in Cb null mice
and WT littermates. Blood pressure measurements from Cb null
mice and their WT littermates, pre and post treatment with
angiotensin II. Both genotypes showed similar systolic and diastolic
blood pressure before angiotensin treatment. Following 4 weeks of
treatment, both Cb null and WT mice showed similar and significant
increases in systolic and diastolic blood pressure. n = 7 mice per
genotype; error bars indicate standard deviations. Probabilities <
0.05 indicated on graph.
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WT, Cb null mutants displayed smaller hearts and
improved cardiac function in 4 of 5 echocardiographical
parameters measured including left ventricular mass
index, fractional shortening, ratio of early to late diasto-
lic filling, and ratio of aortic to left atrial diameter.
Only mass performance index showed no difference
between genotypes. The role that ang II plays in the
renin-angiotensin system (RAS) is known to be pivotal
in the regulation of blood pressure [17]. Resistance of
PKA Cb null mice to cardiac hypertrophy demonstrates
that PKA plays a role in the mediation of hypertension

and its myopathological effects, although what that role
is remains to be elucidated.
It has been known for some time that the b-adrenergic

(b-AR)/adenylyl cyclase/PKA pathway, which is central
to stimulating cardiac function, is dysfunctional in heart
failure [18]. That b-AR signaling is detrimental to cardiac
function is supported by clinical studies in humans show-
ing that blockade of b-AR receptors improves survival in
heart failure patients [19], and by studies on transgenic
mice, showing that chronic activation of the cAMP-PKA
pathway by cardiac-specific overexpression of b-AR, Gsa,

Figure 2 PKA Cb null mice are resistant to angiotensin II-induced cardiac hypertrophy and dysfunction. Echocardiography and Doppler
analyses of WT and PKA Cb null littermates, pre and post angiotensin treatment. 5 parameters of cardiac morphology and function were
measured: FS (fractional shortening of the left ventricle), Ea/Aa (ratio of early over late diastolic filling), AO/LA (ratio of the aortic diameter/left
atrial diameter), LVMI (left ventricular mass index, standardized to tibia length) and MPI (mass performance index). The hearts of angiotensin-
treated PKA Cb null mice were significantly superior to those of WT littermates, for 4 of the 5 parameters measured. n = 7 per genotype; error
bars represent standard deviations. Probabilities < 0.05 indicated on graph.
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and the a-catalytic subunit of PKA result in cardiomyo-
pathy [2,20]. Disruption of adenylyl cyclase 5, which was
shown to diminish cAMP-PKA signaling in the heart by
30-40%, was also shown to protect the murine heart from
pressure overload-induced decompensation, although it
did not affect the development of hypertrophy [5]. b-AR
signaling can be overstimulated by hypertension [21],
and PKA is known to instigate cardiac hypertrophy in
response to elevation of cAMP by b-adrenergic agonists
[22]. A reduction in the response of the b-AR pathway to
hypertension could be the reason for the protective car-
diac effects of the Cb null mutation. There are, however,
opposing studies that point to a protective role for the b-
AR/AC/PKA pathway in response to hemodynamic over-
load. In humans, PKA-dependent phosphorylation of car-
diac troponin I (TnI) has been found to be reduced in

dilated cardiomyopathy [4], supporting the idea that loss
of responsiveness of the b-AR pathway plays a role in
cardiomyopathy. This finding is also supported in mice:
overexpression of two types of adenylyl cyclase in the
heart result in improved cardiac function [23,24].
Another PKA mutant mouse model lacking the regula-
tory RIIb subunit of PKA [25,26], displays an obesity
resistant phenotype similar to the Cb null mutant [9],
and is thought to be sensitive to b-adrenergic activation
[27,28], an idea that is supported by their exaggerated
sensitization response to amphetamine [29]. Similarities
in other phenotypes between RIIb null and Cb null
mutants indicate that they may also share enhanced b-
AR signaling. It is unknown why in some cases, loss of b-
AR signaling seems protective to cardiac function, and in
other cases, the opposite seems to be true. The

Figure 3 Hearts from PKA Cb null mice are resistant to hypertrophic effects of angiotensin. A. Heart weights of WT and PKA Cb null
mice, before and after treatment with angiotensin II. Hearts of unchallenged mice showed similar weights regardless of genotype, but hearts of
WT mice after angiotensin II treatment were significantly larger that those of PKA Cb null littermates. Heart weights standardized to tibia length.
n = 7 per genotype; error bars represent standard deviations. Probabilities < 0.05 indicated on graph. B. Hearts of angiotensin II-treated WT mice
were visibly larger than those of Cb null littermates. Echocardiographical measurements of LVMI were confirmed both visually and by weighing
the hearts; the angiotensin II-treated WT heart on the left was found using echocardiography to have an LVMI of 4.07 while the challenged Cb
null heart on the right was found to have an LVMI of only 2.15.
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conflicting data does indicate that disruption of the dif-
ferent components of the b-AR pathway, and even differ-
ent components of the PKA enzyme itself, have different
consequences on cardiac performance. It is also unknown
if and how the b-AR pathway is affected in PKA Cb null
mice, but the idea that alterations in this pathway may be
in part responsible for the protective effects of the Cb
mutation on ang II-induced cardiomyopathy needs to be
taken into consideration.
Other potential roles for PKA in protection against

cardiac hypertrophy and dysfunction are numerous and
diverse. Cyclic AMP signaling regulates a vast number
of cellular processes, including cellular growth [30]. Spe-
cifically, activation of cAMP-PKA signaling has been
shown to inhibit smooth muscle proliferation [31]. Like
angiotensin II, cAMP/PKA transiently stimulates the
expression of immediate-early genes [32]. In addition,
PKA is known to regulate activity of some of the same
pathways both activated by ang II and linked to cardiac
hypertrophy; for example, PKA modulates ANF-
dependent cGMP accumulation in renal cells [33].
Hypertrophy of cardiomyocytes in response to hyperten-
sion is thought to compensate for wall stress, and is
characterized by an increase in cell size and enhanced
protein synthesis [34]. Stretching of cardiomyocytes in
response to haemodynamic overload is known to
increase protein synthesis by activating second messen-
gers such as Raf-1 kinase and extracellular signal-regu-
lated protein kinases (ERKs) through activation of
protein kinase C (PKC) [35]. Activation of PKA has
been shown to have a synergistic effect on PKC-induced
stimulation of Raf-1 and MAP kinases in rat cardiomyo-
cytes[36,37], and disruption of PKA Cb may reduce this
effect. Growth factors may also play a role. For example,
epidermal growth factor receptor (EGFR) phosphoryla-
tion is known to be involved in the development of
pressure overload-induced cardiac hypertrophy [38]. In
liver, disruption of Cb leads to a reduction in EGFR
levels [39], although this result still needs to be con-
firmed in the heart. Other downstream targets of PKA
in myocytes include the L-type Ca2+ channel in the sar-
colemma, the ryanodine receptor (RyR2), and phospho-
lamban in the sarcoplasmic reticulum (SR) [40,20].
There is substantial evidence that calcium signaling
pathways play a role in cardiac hypertrophy [41,42], sup-
ported by the finding that its development in rats, in the
presence of hypertension can be inhibited by blockade
of L-type calcium channels [43]. Finally, PKA has
recently been found to inhibit nuclear export of histone
deacetylase 5 (HDAC5), resulting in inhibited gene tran-
scription and attenuated phenylephrine and angiotensin
II-induced rat cardiomyocyte hypertrophy [44]. HDACs
play a role in the transcriptional regulation of myocyte
enhancer factor 2 (MEF2), a transcription factor that

activates many cardiac genes and is known to be
involved in the development of cardiac hypertrophy [45].

Conclusions
This study shows a clear role for the b catalytic subunit
of PKA in ang II-induced cardiomyopathy. Not only
does it illustrate the usefulness of the PKA Cb null
mouse for the study of the role of PKA signaling in
heart disease; it also highlights the potential of the PKA
Cb subunit as a pharmaeutical target in the treatment of
cardiac hypertrophy and dysfunction.
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