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behavior and gametogenesis.

samples.

Background: D. melanogaster is increasingly used as a lipid metabolism model, but the D. melanogaster
metabolome is not well studied. A number of studies strongly suggest that lipid metabolism is linked to sexual

Findings: We determined the levels of 400 different lipids in the non-gonadal soma of D. melanogaster females
and males. We found higher levels of saturated cholesterol esters and lysophosphatidylcholine in males, and higher
levels of polyunsaturated cholesterol esters in females. We also determined the levels of these lipids in females and
males without a germline to determine if the absence of gamete “sinks” for metabolic products, such as yolk and
lipid deposits in eggs, altered somatic lipid profiles. We observed little change in lipid profiles between these

Conclusions: Overall lipid compositions are similar between the sexes, although there are differences in saturation
states of two lipid classes, where saturated fatty acids were male-biased and polyunsaturated fatty acids were
female-biased. The presence of a germline did not significantly influence lipid profiles, raising the possibility that
germline-dependent changes in metabolic gene expression patterns serve a homeostatic purpose.

Background

Lipids are the major energy storage molecules in cells
and act as ligands in cell-cell and organism-organism
pheromone signaling. Drosophila is an emerging model
for studying all of these aspects of lipid biology [1-4].
We are particularly interested in sex differentiation and
there is much indirect evidence that energy storage,
cell-cell signaling, and pheromone lipid requirements
differ between the Drosophila sexes.

The energy storage needs of females are higher than
those of males due to egg production. Eggs, which are
comprised primarily of lipoprotein particles (yolk) to
store energy for embryonic development, make up a
large fraction of the female’s body mass and are there-
fore a metabolically expensive energy sink [5,6]. The
lipid signaling molecule ecdysone, best known for the
role it plays in metamorphosis [7], is highly female-
biased in adults [8] and plays a major role in production
of yolk constituents in the ovarian somatic follicle cells
and distantly located fatbody where they are transported
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to growing oocytes via the hemolymph [5,9-11]. Meta-
bolic enzymes such as the digestive chymotrypsins also
show sex-biased expression in Drosophila [8,12], again
supporting the idea of a link between reproduction and
energy homeostasis.

In addition to the direct connections between egg and
lipid production, a number of lipids act as sex-biased
hormones or pheromones that modulate pre- and post-
mating behaviors in flies [13,14]. These lipids might play
a regulatory role in linking energy storage and reproduc-
tion. For example, the head fatbody shows sex-biased
and/or circadian expression of a host of genes that
encode lipid-binding proteins, some of which regulate
feeding behavior, mating, or both [15-19]. Interestingly,
the gene encoding the critical transcriptional regulator
of most aspects of somatic sex differentiation, Double-
sex, is expressed in a tightly regulated and spatially
restricted set of cells in the nervous system, the fatbody,
and a segment of the midgut where it is well positioned
to modulate lipid metabolism in the full spectrum of
cell types that might regulate a physiological axis includ-
ing the brain, fatbody, and digestive tract of the sexes
[20,21]. Fruitless, another transcription factor controlling
mating behavior is expressed in a limited set of neurons
in Drosophila [22], and also regulates lipid storage [23].
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These studies suggest that the sex determination hierar-
chy is a regulator of energy homeostasis.

Such physiological relationships are perhaps best
observed in fitness trade-off experiments that explore
the competing optimal conditions for somatic and germ-
line development. For example, reproduction reduces
the lifespan of C. elegans and alters lipid metabolism
[24,25]. In Drosophila, increased egg production results
in starvation sensitivity, and conversely, blocking egg
maturation prevents a metabolic shift in the acid/base
balance in the female gut at the onset of young adult
female reproductive activity [26,27]. These and other
studies suggest that lifespan, reproduction, and energy
metabolism are linked in both Drosophila and C. elegans
[2]. We have previously reported germline-dependent
changes in the expression of genes encoding metabolic
functions and suggested that they may underlie some of
these metabolic/reproductive phenotypes [8]. To support
future work on lipid metabolism as it relates to sex, we
undertook a broad survey of lipid profiles in adult non-
gonadal tissues. We also explored the possible influence
of the germline on these profiles.

Findings

To obtain a reasonably comprehensive profile of lipids
in the Drosophila soma, we examined 10 lipid classes:
cardiolipin, cholesterol ester, diacylglycerol, free fatty
acid, lysophosphatidylcholine, phosphatidylcholine,
phosphatidylethanolamine, phosphatidylserine, sphingo-
myelin, and triacylglycerol by mass spectrometry (Lipo-
mics Technologies, Sacramento CA). We made lipid
determinations on mated sexed adult flies of the geno-
type tud’ bw' sp’/CyO at 5-7 days after eclosion. To
eliminate direct germline contributions to the lipid pro-
files, we removed the gonads prior to extraction. This
also results in the loss of hemolymph and therefore
most of the circulating lipids. To determine if lipid pro-
files differed due to indirect effects of the germline on
somatic physiology, we examined flies from homozgyous
tud’ mothers. The progeny of homozygous tud’
mothers do not form a germline, while progeny of het-
erozygous tud’ mothers have a fully functional germline.
This allowed us to examine the effect of the germline
on somas with the same zygotic genotype. This is one of
the same maternal/zygotic genotypes we previously
described for expression profiling [8]. Flies were grown
on a standard rich cornmeal/sugar/yeast/agar media
(<https://stockcenter.ucsd.edu/info/food_cornmeal.php>,
Drosophila Species Stock Center, Tucson AZ); at 22°C;
with 60% relative humidity; under constant light. We
obtained lipid profiles from 8 samples, 4 from each sex,
further stratified by germline status (Additional File 1).
Note that statistical power was strongest for overall lipid
profiles in adult flies where sample size was 8 and
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weakest for germline status within sex where sample
size was 2. Because of the limited differences in lipid
levels observed, collapsing germline classes to increase
power was statistically justified by homogeneity.

To compare all of the fatty acids profiled, we plotted
the data for individual lipid species within the ten major
classes by germline state and by sex. We found remark-
ably little difference in lipids between flies with or with-
out a germline (r > 0.97; Figure 1a,b) and only slightly
increased scatter between the sexes (r = 0.96; Figure 1c,
d). We did observe a few data points outside the 95%
confidence interval limits, but outliers are expected
among the 400 lipids measured. However, this explora-
tory analysis showed that all the outliers are members of
the sphingomyelin, cholesterol ester, and lysophosphati-
dylcholine classes, suggesting that the outliers represent
more than random measurement error. Our suspicions
were raised further by the pattern of saturation states
among the outliers. The species higher in males were
saturated 16 or 18 carbon fatty acids (16:0 or 18:0) and
the species higher in females were monounsaturated 18
carbon fatty acids (18:1n7) and polyunsaturated fatty
acids (18:3n6, 20:3n3, or 20:3n9). These data suggested
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Figure 1 Relationships of fatty acids between germline states
and between sexes. (A, B) Within sex comparisons between flies
with a germline or with no germline. (C, D) between sex
comparisons of flies with a germline or with no germline. Each data
point represents the between-replicate mean value (on a log2(x+1)
scale; where x is the measured value) of a fatty acid. The red lines
indicate the limits of 95% confidence intervals, based on bootstrap
resampling methods [33].
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that saturation status within a lipid class might be sex-
biased.

To test this hypothesis, we grouped the lipids by class.
By abundance, the storage molecule triacylglycerol was
the dominant class of lipid in the adult soma, followed
by the lipid bilayer components lysophosphatidylcholine,
phosphatidylcholine, and phosphatidylethanolamine. As
suggested by plotting the abundances of the individual
lipids, there were no significant differences in the abun-
dances of the 10 major classes in non-gonadal soma
between the sexes, or in flies with or without a germline
(Figure 2a).

We then binned lipid classes into saturated, monoun-
saturated, and polyunsaturated fatty acids. Again, we
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observed no significant differences between the flies
with or without a germline within each sex, but we did
observe sex-bias in the saturation states of cholesterol
esters and lysophosphatidylcholines (Figure 2b-d). Since
we observed no significant differences due to germline
status (p > 0.05, t-test), we treated these within-sex sam-
ples as an additional level of replication in order to
increase the power of statistical tests for the differences
in lipid saturation between sexes. As suggested by the
initial exploratory analysis, we observed significantly
higher saturated cholesterol ester and lysophosphatidyl-
choline levels in males (p < 0.005, ¢-test) and an increase
in polyunsaturated and/or monounsaturated cholesterol
ester and lysophosphatidylcholine levels in females (p <

IS
s A , ,
&) m females with germline
S S = females no germline
S 8 _ m males with germline
> o - = males no germline
g E-
3
£ o HT el : =y
c
E 7 *%*
S 8 4
c) =
< {
L
& i
2 87
6 =
€ o
e C
S -
o 8
g
g _
= 5]
g o -
e D_
©
o> 8 -
T og-
E i
2 87
2 i
g < -
CL CE DAG FA LY PC PE PS SP TAG
Lipid class
Figure 2 Distribution of fatty acids in the sexes with a germline or with no germline. (A) Fatty acids in nmoles per gram tissue by lipid
class. Varied fatty acid components of lipids can be grouped into three categories: (B) saturated fatty acids (SFA); (C) monounsaturated fatty
acids (with one double bonded carbon; MUFA); and (D) polyunsaturated fatty acids (with multiple double bonded carbons; PUFA). Female and
male nongonadal somas from flies with a germline or with no germline were assayed (see key). Lipids were grouped into ten lipid classes: CL =
Cardiolipin; CE = Cholesterol ester; DAG = Diacylglycerol; FA = Free fatty acid; LY = Lysophosphatidylcholine; PC = Phosphatidylcholine; PE =
Phosphatidylethanolamine; PS = Phosphatidylserine; SP = Sphingomyelin; TAG = Triacylglycerol. Histograms are mean + SEM. Significant
differences between sexes after binning the with and with no germline data (* p < 0.05; ** p < 0.005, t-test).
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0.05, t-test). Given that lecithin:cholesterol acyltransfer-
ase transfers fatty acids from phosphatidylcholine to
form cholesterol ester and lysophosphatidylcholine,
these differences in saturation states may be linked.

We were interested in further examining the relation-
ships between the different lipids to determine if parti-
cular lipids co-vary, or cluster, among the samples. This
type of analysis is particularly useful with limited sample
sizes as there are many more measurable relationships
between lipid species than between samples. We used
nonnegative matrix factorization (NMF), an unsuper-
vised, parts-based learning paradigm, to explore these
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relationships [28]. The fatty acid profiling data was
input as a matrix with cells representing the 40 combi-
nations of samples and lipid classes that is decomposed
into weight and pattern via a multiplicative updates
algorithm [28] to estimate that there were 4 meta-fatty
acid clusters (not shown). On the basis of k = 4, we gen-
erated four consensus clusters of the 40 combinations of
samples and lipid classes (Figure 3). These distinct clus-
ters are associated with specific biochemical functions.
We observed only a single lipid class that mapped to
different positions in the matrix as a result of sex. In
males, lysophosphatidylcholine clustered with the
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Figure 3 A heatmap of sample-lipid class combinations. Given the matrix partition factor k = 4, we ran the NMF algorithm 100 times to
generate consensus clustering of the combinations of samples and lipid classes. Each run resulted in a 40 x 40 connectivity matrix with an
entry of 1 if sample-lipid class combinations i and j cluster together and O otherwise, where i, j = 1,.., 40. The consensus matrix is the averaged
connectivity matrix obtained over the 100 runs. Each block along the main diagonal represents a consensus cluster of the combination of
samples and lipid classes. Meta-fatty acid cluster characteristics are to the left, specific meta-fatty acid groups to the right: F = female; M = male;
GL+ = with a germline; GL- = with no germline; CL = cardiolipin; CE = cholesterol ester; DAG = diacylglycerol; FA = free fatty acid; LY =
lysophosphatidylcholine; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; SP = sphingomyelin; TAG =
triacylglycerol. Only Lysophosphatidylcholine from males and females map to different locations in the matrix (¥).
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sphingomyelins, while in females lysophosphatidylcho-
line clustered with the other membrane lipids. These
data provide additional evidence that there is sexual
dimorphism for this specific lipid class. However, the
most striking finding is that the relationships between
lipids are quite similar between the sexes and between
flies with or without a germline.

Discussion

Our a priori hypothesis was that lipid profiles would
differ dramatically between sexes and especially
between flies with or without a germline. We provide
no evidence to support the hypothesis that lipid pro-
files in the non-gonadal soma are germline-dependent.
However, we did observe sex-biased saturation states.
It is intriguing that the saturation differences we
observed were in the lysophosphatidylcholine and cho-
lesterol ester classes, as lysophosphatidylcholine and
cholesterol ester are produced by LCAT, an enzyme
implicated in Low and High Density Lipoprotein parti-
cle formation [29]. Drosophila egg development relies
on Low Density Lipoprotein particles that are taken-
up from the hemolymph [5], which is also intriguing.
But in the absence of eggs, we would have expected
some change in the lysophosphatidylcholine or choles-
terol ester profiles in the female soma. Thus the germ-
line-dependent expression of genes encoding various
lipid metabolism enzymes [8,27] is not mirrored by
germline-dependent lipid profiles. One hypothesis is
that those changes in gene expression maintain lipid
homeostasis in the absence of a germline “sink” for
lipids.

Saturation states have been implicated in mating beha-
vior in flies. The sex-specific enzyme 1 (sxel) locus
encodes a putative fatty acid hydrolase required for high
mating efficiency. In the absence of sxel the saturation
states of multiple lipids are altered in male heads sug-
gesting that lipid saturation plays a role in mating beha-
vior [15]. The lipid desaturase 1 locus (dsatl) is
required for both pheromone signaling and the starva-
tion response in flies [30-32]. Our work suggests that
the major lipid differences between the sexes are
restricted to saturation states. Saturation states may be
an area of further investigation for those interesting in
tying together the emerging physiological axis that coor-
dinates mating and feeding behavior with energy storage
and gametogenesis.

Additional material

[ Additional File 1: Lipid profiling data set. ]
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