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Effects of immunomodulatory drugs on TNF-a
and IL-12 production by purified epidermal
langerhans cells and peritoneal macrophages
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Abstract

Background: Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis
that play a key role in the skin’s immune response. The production of cytokines is a key event in both the initiation
and the regulation of immune responses, and different drugs can be used to remove or modify their production
by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and
autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A,
and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-a, IL-10, and IL-12 by
purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice.

Findings: All drugs inhibited TNF-a production by Langerhans cells after 36 hours of treatment at two different
concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a
less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-a and IL-12 production by
macrophages decreased, but IL-10 levels were unchanged after all treatments.

Conclusions: Our results demonstrate that these drugs modulate the immune response by regulating pro-
inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating
that these cells are important targets for immunosuppression in various clinical settings.

Background
Dendritic cells (DC) are professional antigen-presenting
cells (APC) that possess the unique ability to stimulate
naïve T cells and initiate a primary immune response
[1]. In the skin, the main DC populations present
include epidermal DC (Langerhans cells) and dermal
DC (myeloid DC and plasmacytoid DC). Langerhans
cells (LC) are immature cells that reside in the epider-
mal layer and are distinct from other DC subsets [2].
In medicine, LC are often studied due to their role in

numerous skin diseases, including psoriasis and contact
and allergic dermatitis [3], and their ability to uptake
antigen is crucial to inducing dermal immune response
and tolerance [4]. Upon activation, LC gain the ability
to produce chemokines [5] and pro-inflammatory

cytokines, including tumor necrosis factor-a (TNF-a)
and IL-12 [6], which coordinate local and systemic
inflammatory responses. TNF- a is a pleiotropic cyto-
kine, produced primarily by monocytes and macro-
phages, which plays an important role in host immune
responses. Antigen-presenting cells and phagocytic cells,
including monocytes and macrophages, dendritic cells,
and neutrophils, also are the primary producers of IL-
12, an important regulatory cytokine that has a function
central to the initiation and regulation of the adaptive
immune response [7]. IL-10 is also an important immu-
noregulatory cytokine produced by many cell popula-
tions. Its main biological function seems to be the
limitation and termination of inflammatory responses
and the regulation of differentiation and proliferation of
several immune cells, and the major source of IL-10 in
vivo seems to be macrophages [8].
Different drugs may be used to modify cytokine pro-

duction by DC and thus alter the initiation and regula-
tion of immune responses to a broad spectrum of
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diseases, such as human inflammatory and autoimmune
diseases [9]. Immunosuppressive drugs used to treat
dermatological conditions, control allograft rejection,
and promote transplant tolerance are well recognized
for their ability to inhibit lymphocyte activation and
proliferation. These drugs may also affect the differentia-
tion, viability, and functions of DC [10], resulting in
suppressed T-cell responses. Such drugs promote T-cell
unresponsiveness as a means for treating a variety of
clinical conditions, including transplantation and auto-
immune disorders and allergic hypersensitivity.
LC and macrophages (MF) are effective APC whose

secretion of immunoregulatory and pro-inflammatory
cytokines plays a critical role during T-cell priming [6].
To gain a better understanding of immunosuppressive
drugs’ influences on these APC and their potential to
induce tolerance, the present study sought to examine
the effects of prednisone, thalidomide, cyclosporine A,
and amitriptyline on TNF-a, IL-10, and IL-12 produc-
tion by epidermal LC and peritoneal MF in vitro.

Methods
Reagents
Prednisone, thalidomide, cyclosporine A, amitriptyline
and LPS were purchased from Sigma-Aldrich (St. Louis,
MO) and were dissolved in dimethyl sulfoxide (DMSO)
or methanol to make 10-2 M stock solutions. ELISA kits
for TNF-a, IL-12 (p40/p70), and IL-10 were purchased
from BD Pharmingen (San Diego, CA).

Mice
Female BALB/c mice were provided by the Evandro
Chagas Institute, where they were maintained under
specific pathogen-free conditions until use at the age of
8-12 weeks. All procedures were carried out under the
Brazilian Law 1153-A, which regulates animal research
in Brazil, and were approved by animal ethics committee
of Pará Federal University.

LC enrichment and culture
LC were prepared using the previously described pan-
ning method, resulting in a purity of over 95% [11].
Briefly, the murine epidermis was separated from the
dermis after 3 h of treatment with dispase II (3000 U
per ml, Sigma), a neutral protease, at 37°C and 5% CO2.
The epidermis was then incubated with DNAse enzyme
(0.025%, Sigma) for 20 min at room temperature, after
which an epidermal cell suspension was obtained by vig-
orous pipetting of the epidermal sheets. Next, the cell
suspension was treated with mouse anti-mouse Iad

(murine MHC allele) monoclonal antibody (1:600, BD
PharMingen, San Diego, CA) for 45 min on ice. The
cells were then incubated in plates coated with goat
anti-mouse IgG (Jackson Immuno Research, West

Grove, PA) (1:100) for an additional 45 min at 4°C.
After washing away floating cells, adherent LC were
collected and resuspended in complete medium, con-
sisting of RPMI-1640 supplemented with 10% fetal calf
serum (Gibco, Grand Island, NY), 10000 U/ml penicil-
lin/streptomycin solution (Sigma), and 50 μM b-
mercaptoethanol (Merck, Darmstadt, Germany),
dispensed into 96-well flat bottom plates and incu-
bated in humidified 5% CO2 at 37°C. These cells are
cultured in suspension and can be maintained in cul-
ture flasks that are not tissue-culture treated.

Cell viability assessment
After exposure to prednisone, thalidomide, cyclosporine
A, or amitriptyline for 36 h, LC or MF were rinsed three
times in phosphate-buffered saline (PBS) and incubated
with propidium iodide (10 μg/ml) immediately prior to
flow cytometric analysis (Epics XL, Beckman Coulter,
Miami, FL) or before mounting in dilute medium on a
glass slide with coverslip to assess cell viability.

Preparation of peritoneal MF
MF were isolated from the peritoneal cavities of female
BALB/c mice. Briefly, 10 ml of cold PBS was injected into
the peritoneal cavity of each mouse and the resultant exu-
date was immediately collected, washed, and resuspended
in RPMI-1640 medium supplemented with 10% fetal calf
serum, penicillin/streptomycin solution and 50 μM b-
mercaptoethanol. The cell suspension was then dispensed
into 24-well flat bottom plates and incubated in humidi-
fied 5% CO2 at 37°C for 1 h to allow MF adherence. The
non-adherent cells were removed by three washes with
RPMI-1640 medium. The purified MF were incubated for
an additional 24 h with 1 ml RPMI-1640 medium supple-
mented with 10% fetal calf serum, penicillin/streptomycin
solution and 50 μM b-mercaptoethanol and 10 ng/ml
lipopolysaccharide (LPS; Sigma) [12].

Drug treatment
In the culture experiments, purified LC (2 × 105 cells/
well) or peritoneal MF (5 × 104 cells/well) were
incubated with or without prednisone, thalidomide,
cyclosporine A, or amitriptyline at varying concentra-
tions (10-6 M, 10-8 M, or diluent alone) in RPMI-1640
medium supplemented with 10% fetal calf serum,
10000 U/ml penicillin/streptomycin solution and 50 μM
b-mercaptoethanol. Drug concentrations were chosen
based on the results of preliminary studies which
showed that these concentrations had no effects on the
functions of other cell types [13,14].

Measurement on cytokine production
Culture supernatants were collected after 36 h, centri-
fuged, stored at -20°C and subjected to protein
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quantification at the indicated time-points by ELISA,
using mouse TNF-a, IL-12, and IL-10 immunoassay kits
according to the manufacturer’s instructions (BD Phar-
mingen). Protein levels were assessed using a microplate
reader at 450 nm (MRX Revelation-DINEX, Chantilly,
VA), and each sample was tested in triplicate. Data are
expressed in pg/ml × 105 cells (LC) or pg/ml × 104 cells
(peritoneal MF).

Statistical analysis
Data obtained from three independent experiments are
presented as mean ± SD and were compared using the
Student’s t test for single comparisons or analysis of var-
iance (ANOVA) for multiple comparisons. Differences
were considered significant at p < 0.05.

Results
LC viability by propidium iodide staining
The viability of cultured LC was carefully checked in
each experiment. By panning, we obtained about 95% of
LC, with more than 90% viability (Table 1). After 36
hours in culture, cell viability decreased to approxi-
mately 70%, and was not affected by treatment with pre-
dnisone, thalidomide, cyclosporine A, or amitriptyline at
10-6 M or 10-8 M (Table 1).

Differential effect of immunomodulatory drugs on
cytokine secretion by LC
The purified LC acquires mature phenotypes during
culture even without exogenous stimulation [15]. We
utilized those cells for in vitro culture system in which
the interference of keratinocytes or keratinocytes-
derived cytokines was negligible. To determine whether
TNF-a and IL-12 were secreted into the culture med-
ium by unstimulated LC after 36 hours, cytokine levels

in the medium were quantified via enzyme-linked
immunosorbent assay (ELISA). TNF-a production (21.8
± 1.4 pg/ml × 105 cells) decreased to 10.8 pg/ml × 105

cells (p < 0.05) after treatment with 10-6 M prednisone
and to 9.5 pg/ml × 105 cells (p < 0.05) after treatment
with 10-8 M prednisone, corresponding to an almost
50% reduction (Table 2). LC treatment with thalidomide
resulted in significant inhibition of TNF-a secretion,
decreasing from 21.8 ± 1.4 pg/ml × 105 cells to 7.8 ±
1.7 pg/ml × 105 cells at 10-6 M (64% reduction, p <
0.05) and to 4.4 ± 3.8 pg/ml × 105 cells at 10-8 M (80%
reduction, p < 0.01) (Table 2). Following cyclosporine A
treatment, TNF-a production was lowered to 5.8 ± 0.4
pg/ml × 105 cells at 10-6 M (73% reduction, p < 0.01)
and to 7.6 ± 0.5 pg/ml × 105 cells at 10-8 M (65% reduc-
tion, p < 0.01) (Table 2). Similarly, TNF-a release by LC
was reduced by amitriptyline, but this reduction was less
pronounced than that induced by each of the three
other compounds over the same time period. Specifi-
cally, amitriptyline decreased TNF-a secretion by 55% at
10-6 M (9.7 ± 2.2 pg/ml × 105 cells, p < 0.05) and by
44% at 10-8 M (12.2 ± 0.6 pg/ml × 105 cells, p < 0.05).
IL-12 production (9.4 ± 0.5 pg/ml × 105 cells) decreased
to 2.9 ± 0.7 pg/ml × 105 cells (p < 0.01) after treatment
with 10-6 M prednisone and to 4.0 ± 1.1 pg/ml × 105

cells (p < 0.01) after treatment with 10-8 M prednisone,
corresponding to a 69% and 57% reduction, respectively
(Table 2). LC treatment with thalidomide resulted in
significant inhibition of IL-12 production, decreasing
from 9.4 ± 0.5 pg/ml × 105 cells to 4.8 ± 0.5 pg/ml ×
105 cells at 10-6 M (49% reduction, p < 0.01) and to
3.5 ± 1.8 pg/ml × 105 cells at 10-8 M (62% reduction,
p < 0.01) (Table 2). Following cyclosporine A treatment,
no significant reduction in IL-12 secretion was noted for
any of the two concentrations tested (Table 2). Similarly,

Table 1 LC viability after treatment with
immunomodulatory drugsa

Concentration Viability (%)

Freshly isolated LC - 94.4 ± 2.1

36 h cultured LC - 73.3 ± 2.8

Prednisone 10-6 M 69.9 ± 3.7

10-8 M 66.7 ± 5.5

Thalidomide 10-6 M 63.5 ± 3.2

10-8 M 61.4 ± 2.1

Cyclosporine A 10-6 M 62.2 ± 6.4

10-8 M 61.2 ± 10.7

Amitriptyline 10-6 M 66.2 ± 2.2

10-8 M 64.6 ± 1.7
aPurified LC were cultured for 36 h in the presence or absence of 10-6 M or
10-8 M prednisone, thalidomide, cyclosporine A, or amitriptyline. Cell viability
was then assessed using propidium iodide. All results are shown as mean ±
SD for three independent experiments, which did not vary significantly from
the control.

Table 2 In vitro effects of two different concentrations of
immunomodulatory drugs on TNF-a and IL-12
production by LCa

Concentration TNF-a (pg/ml) IL-12 (pg/ml)

36 h cultured LC - 21.8 ± 1.4 9.4 ± 0.5

Prednisone 10-6 M 10.8 ± 2.0* 2.9 ± 0.7**

10-8 M 9.5 ± 0.9* 4.0 ± 1.1**

Thalidomide 10-6 M 7.8 ± 1.7* 4.8 ± 0.5**

10-8 M 4.4 ± 3.8** 3.5 ± 1.8**

Cyclosporine A 10-6 M 5.8 ± 0.4** 8.7 ± 0.4

10-8 M 7.6 ± 0.5** 8.5 ± 0.6

Amitriptyline 10-6 M 9.7 ± 2.2* 6.4 ± 0.3*

10-8 M 12.2 ± 0.6* 7.4 ± 2.7
aPurified LC were cultured for 36 h in the presence or absence of 10-6 M or
10-8 M prednisone, thalidomide, cyclosporine A, or amitriptyline. TNF-a and IL-
12 levels in the culture supernatant were quantified by ELISA. All results are
shown as mean ± SD for three independent experiments. *p < 0.05 vs.
control. **p < 0.01 vs. control.
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amitriptyline inhibited IL-12 secretion by 32% at 10-6 M
(6.4 ± 0.3 pg/ml × 105 cells, p < 0.05), while the lowest
dose of the same drug did not have a statistically signifi-
cant effect. Additionally, no IL-10 release was detected
in the culture supernatants over the 36-hour incubation
period (data not shown).

MF viability by propidium iodide staining
After exposure to prednisone, thalidomide, cyclosporine
A, or amitriptyline for 36 h, we assessed the cell viability
of cultured MF by PI staining. None of the immunomo-
dulatory drugs used affected the cell viability of cultured
MF (Table 3).

Differential effect of immunomodulatory drugs on
cytokine secretion by MF
MF incubated with LPS for 36 hours secreted TNF-a,
IL-12 and IL-10 at the following respective levels: 294 ±
33.9 pg/ml × 104 cells, 258 ± 27.7 pg/ml × 104 cells, and
195 ± 12.8 pg/ml × 104 cells (Table 4). A significant
decrease in TNF-a production by LPS-stimulated MF
was observed after prednisone treatment at 10-6 M or
10-8 M (p < 0.05), corresponding with a 56% or 53%
(129.6 ± 33.0 pg/ml × 104 cells or 138.2 ± 6.0 pg/ml ×
104 cells) reduction. Thalidomide at 10-6 M downregu-
lated TNF-a secretion by 65.6%, to 100.9 ± 9.0 pg/ml ×
104 cells (p < 0.01), while LPS-stimulated MF incubated
with 10-8 M thalidomide exhibited a slight, but statisti-
cally insignificant, reduction in TNF-a release. Similarly,
cyclosporine A reduced TNF-a secretion significantly
(117.4 ± 59.7 pg/ml × 104 cells) but only at the highest
dose, while the lowest dose of the same drug did not
have a statistically significant effect. When LPS-stimu-
lated MF were incubated with 10-6 M amitriptyline,
TNF-a release was reduced from 339.3 ± 82.3 pg/ml ×
104 cells to 120.6 ± 16.9 pg/ml × 104 cells (60%

reduction, p < 0.05), while 10-8 M amitriptyline caused
no significant reduction (Table 4).
IL-12 secretion was also significantly downregulated

(p < 0.05) by prednisone at 10-8 M (149.4 ± 7.5 pg/ml ×
104 cells), thalidomide at 10-6 M (139.0 ± 9.8 pg/ml ×
104 cells), cyclosporine A at 10-8 M (149.7 ± 9.1 pg/ml ×
104 cells), and amitriptyline at both 10-6 M and 10-8 M
(150.0 ± 5.4 pg/ml × 104 cells and 148.6 ± 8.6 pg/ml ×
104 cells), all corresponding to about a 40% reduction.
Meanwhile, IL-10 levels by LPS-stimulated MF were not
altered by any of the drugs tested (Table 4).

Discussion
Epidermal DC are believed to be involved in allergic and
irritant contact dermatitis [16], as well as in autoim-
mune disease [17]. One approach to improving DC tol-
erogenicity is suppression of their maturation using
anti-inflammatory cytokines or pharmacological agents
[18]. In the present study, we demonstrate that several
immunomodulatory drugs markedly downregulated
TNF-a and IL-12 secretion by unstimulated cultured
purified LC and by LPS-stimulated MF without dimin-
ishing cell viability.
We found that in vitro TNF-a and IL-12 production by

unstimulated cultured LC was reduced by prednisone.
Previous data demonstrated that DC derived from
human monocytes were similarly suppressed by dexa-
methasone [19]. Our results show that prednisone also
inhibits LPS-stimulated MF production of TNF-a, corro-
borating a previous study that demonstrated suppressed
TNF-a secretion by peripheral blood monocytes pre-
incubated with LPS for 24 or 48 hours, and then treated
with dexamethasone. The same study also showed that,
depending on the amplitude of LPS stimulation, gluco-
corticoids increased IL-10 secretion at low doses and
decreased IL-10 release at high doses [20]. Other
research showed that methylprednisolone consistently
induces IL-10 production by human alveolar MF when
cells are exposed to the drug for up to 20 hours, followed
by LPS stimulation [21]. All of the in vitro data summar-
ized above appear to disagree with our findings, since we
did not see a consistent change in IL-10 production due
to prednisone treatment. This discrepancy may be due to
differences in the experimental setup, including the fact
that previous studies added glucocorticoids before or
together with LPS and used human cells. Thus, the type
of stimulus and cell source may influence the effects of
glucocorticoids on IL-10 secretion.
Prednisone also inhibited the IL-12 secretion by LPS-

stimulated MF after 36 hours of treatment. This finding
corroborates published data showing that MF treated
with dexamethasone for 18 hours, followed by stimula-
tion with Listeria antigen for two days, exhibited signifi-
cantly reduced IL-12 production [22].

Table 3 Peritoneal MF viability after treatment with
immunomodulatory drugsa

Concentration Viability (%)

36 h cultured Mj - 95.8 ± 1.5

Prednisone 10-6 M 84.2 ± 2.5

10-8 M 86.1 ± 1.7

Thalidomide 10-6 M 85.4 ± 3.2

10-8 M 86.9 ± 2.2

Cyclosporine A 10-6 M 85.5 ± 2.3

10-8 M 88.2 ± 3.7

Amitriptyline 10-6 M 83.8 ± 2.9

10-8 M 87.7 ± 0.8
aPurified MF were first pre-incubated for 24 h with 10 ng/ml LPS, and then
cultured for 36 h in the presence or absence of 10-6 M or 10-8 M prednisone,
thalidomide, cyclosporine A, or amitriptyline. Cell viability was then assessed
using propidium iodide. All results are shown as mean ± SD for three
independent experiments, which did not vary significantly from the control.
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Thalidomide has been shown to profoundly inhibit
the ability of LC to present skin-purified antigens and
to produce TNF-a [23]. Our data were consistent with
these earlier findings, demonstrating that thalidomide
markedly reduced TNF-a generation by unstimulated
cultured LC after 36 hours of treatment. Previous stu-
dies also demonstrated that thalidomide has inhibitory
effects on TNF-a secretion by unstimulated peripheral
blood cells treated for two days [13]. Thalidomide may
curtail TNF-a production by inhibiting degradation of
the inhibitor of kappa B (I�B) and thus, NF-�B-
mediated expression of TNF-a mRNA [24]. Here, we
also detected downregulation of TNF-a production by
LPS-stimulated MF after thalidomide treatment.
Furthermore, we found also that IL-12 production by
unstimulated cultured LC was strongly suppressed by
both concentrations of thalidomide, and that IL-12
secretion by LPS-stimulated MF was reduced by high
concentrations of thalidomide (10-6 M), supporting
previous studies showing that thalidomide inhibits IL-
12 production by LPS-stimulated monocytes [25].
Another study suggested suppression of TNF-a and
IL-12 as a possible mechanism of thalidomide’s clinical
effects in Crohn’s disease, which improves clinical
symptoms in patients [26], what may explain its clini-
cal efficacy.
We next examined the effects of cyclosporine A on

unstimulated cultured LC. TNF-a production by LC
was inhibited at both concentrations of cyclosporine A,
suggesting that the effects of this drug are similar to
those of prednisone and thalidomide. However, we
observed no significant changes in the IL-12 secretion
by cyclosporine A-treated LC, despite previous observa-
tions that the drug blocked IL-12 production by CD40-
stimulated monocyte-derived DC [19]. It is possible that
cyclosporine A exerts inhibitory effects at different sites
in these two types of APC, resulting in inhibited IL-12
secretion in DC but not in LC. This divergent outcome

may be due to the cells’ different maturation states or
levels of IL-12 production [27].
Although the mechanism underlying cyclosporine A

effects on LC remains to be elucidated, our results sup-
port the hypothesis that cyclosporine A inhibits unsti-
mulated cultured LC TNF-a secretion.
Other investigators have also observed decreased basal

TNF-a secretion by the monocyte cell line U936 [28]
cultured with cyclosporine A for 18 hours at various
concentrations, in either the presence or the absence of
LPS. Another study has demonstrated that cyclosporine
A inhibits IL-12 production and stimulates IL-10 secre-
tion by subtypes of peripheral blood DC (CD11c+ and
CD11c-) [29]. In our study, we observed that cyclospor-
ine A inhibition of TNF-a and IL-12 production by
LPS-stimulated MF only occurred at the highest drug
concentration. Recently, it was reported that the
immunomodulatory effects of cyclosporine A may be
dose-dependent and may be due to inhibition of such
transcription factors such as NF-�B and activator pro-
tein-1 (AP-1) by regulating the Ca+ signaling pathway
(calmodulin and calmodulin-dependent protein kinase-
II, or CaMK-II) [30]. Although the effects of cyclospor-
ine A on LC cytokine production are not well under-
stood, the drug may act by suppressing the number,
DNA synthesis, and function of these cells [31].
We also examined the effects of amitriptyline on LC

and MF cytokine secretion. Despite recent work show-
ing that amitriptyline plays an immunomodulatory role,
little is known about its mechanism of action and target
immune cells. It was previously reported that similar tri-
cyclic antidepressants, such as clomipramine, imipra-
mine, and citalopram, cause reduction in TNF-a release
by LPS-stimulated peripheral blood monocytes [32].
Recently, one study demonstrated that amitriptyline and
its metabolite, nortriptyline, decreases TNF-a secretion
by glial cells [33], which take part in the immune
response of central nervous system. However, other

Table 4 In vitro effects of two different concentrations of immunomodulatory drugs on TNF-a, IL-12, and IL-10
production by MFa

Concentration TNF-a (pg/ml) IL-12 (pg/ml) IL-10 (pg/ml)

36 h cultured Mj - 339.3 ± 82.3 255.1 ± 27.5 195.0 ± 12.8

Prednisone 10-6 M 129.6 ± 33.0* 184.6 ± 48.1 209.8 ± 17.3

10-8 M 138.2 ± 6.0* 149.4 ± 7.5** 193.5 ± 29.8

Thalidomide 10-6 M 100.9 ± 9.0** 149.0 ± 14.9* 221.2 ± 22.7

10-8 M 228.6 ± 78.9 192.9 ± 63.1 160.1 ± 29.8

Cyclosporine A 10-6 M 117.4 ± 59.7* 190.6 ± 10.8 212.4 ± 4.8

10-8 M 215.4 ± 32.3 150.1 ± 11.9** 184.2 ± 21.9

Amitriptyline 10-6 M 139.7 ± 49.2* 157.0 ± 27.6* 200.2 ± 10.2

10-8 M 198.8 ± 47.2 147.1 ± 47.4* 207.5 ± 8.1
aPurified MF were pre-incubated for 24 h with 10 ng/ml LPS and cultured for 36 h in the presence or absence of 10-6 M or 10-8 M prednisone, thalidomide,
cyclosporine A, or amitriptyline. TNF-a, IL-12, and IL-10 levels in the culture supernatant were quantified by ELISA. All results are shown as mean ± SD for three
independent experiments. *p < 0.05 vs. control. **p < 0.01 vs. control.
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recent research using whole blood stimulated by LPS or
concanavalin A did not detect any effect of such antide-
pressants as desipramine, clomipramine, and trimipra-
mine on TNF-a and IL-12 production [34]. Meanwhile,
our data revealed that amitriptyline inhibits TNF-a and
IL-12 secretion by both cell types studied, confirming
previous studies using cultured cells. While the immu-
nomodulatory activity of antidepressants on cytokine
production is not yet fully characterized, it is believed
that one underlying mechanism is an increase in intra-
cellular cyclic adenosine monophosphate (cAMP) [32].
These drugs may also influence immunocompetent cells
cytokine secretion by binding to surface serotonin
receptors [35]. Some researchers may not have observed
similar antidepressant effects on immunocompetent
cells TNF-a secretion because they did not specifically
use non-tricyclic antidepressants. Moreover, many of
these studies analyzed whole blood, which may contain
other cells that affect TNF-a production by releasing
cytokines or even by direct cell-cell contact.
In summary, the study indicates that there are differ-

ential regulation by immunosuppressive drugs on
TNF-a and IL-12 production by LC and MF, which
constitute important targets for immunomodulatory
drugs. Further in vitro and in vivo studies are necessary
to substantiate these findings and to provide further
information on the mode of action of prednisone, thali-
domide, cyclosporine A and amitriptyline on a cellular
and molecular level.
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