
RESEARCH ARTICLE Open Access

Asymmetry, sex differences and age-related
changes in the white matter in the healthy
elderly: a tract-based study
Soichiro Kitamura1*, Masayuki Morikawa1,2, Kuniaki Kiuchi1, Toshiaki Taoka3, Masami Fukusumi1,
Kimihiko Kichikawa3 and Toshifumi Kishimoto1

Abstract

Background: Hemispherical asymmetry, sex differences and age-related changes have been reported for the
human brain. Meanwhile it was still unclear the presence of the asymmetry or sex differences in the human brain
occurred whether as a normal development or as consequences of any pathological changes. The aim of this
study was to investigate hemispherical asymmetry, sex differences and age-related changes by using a tract-based
analysis in the nerve bundles.

Methods: 40 healthy elderly subjects underwent magnetic resonance diffusion tensor imaging, and we calculated
fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values along the major white matter bundles.

Results: We identified hemispherical asymmetry in the ADC values for the cingulate fasciculus in the total subject
set and in males, and a sex difference in the FA values for the right uncinate fasciculus. For age-related changes,
we demonstrated a significant increase in ADC values with advancing age in the right cingulum, left temporal
white matter, and a significant decrease in FA values in the right superior longitudinal fasciculus.

Conclusion: In this study, we found hemispherical asymmetry, sex differences and age-related changes in
particular regions of the white matter in the healthy elderly. Our results suggest considering these differences can
be important in imaging studies.
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Background
The hemispheres of the human brain are asymmetric in
structure and function, and anatomical brain asymmetry
has been studied using various methods [1-9]. A post-
mortem study showed asymmetry of the posterior
superior temporal lobe [10]. Watkins et al. reported
asymmetries of the planum temporale and the angular
gyrus using voxel-based statistical analysis (VBA) [9].
Likewise, Büchel et al. reported asymmetry of the arcu-
ate fasciculus using VBA [11]. Several studies showed
neuroanatomical asymmetry in the gray matter and
white matter fibers [6,12,13].
Similarly, sex is a major factor affecting human brain

morphology, and sex differences in the human brain

have been reported [14-16]. Schalepfer et al. reported a
sex difference in the volume of the language-related
gray matter cortex [15], and Szeszko et al. reported a
sex difference in the frontal white matter region [16].
It was reported that cognitive functions, which com-

prise processing speed, episodic memory and other
executive functions, tend to decline with normal aging
[17]. Regional brain volume loss with normal aging is
associated with poor cognitive function, and frontal
white matter volume correlated with cognitive perfor-
mance [18]. In the elderly, degeneration of the white
matter that connects the local brain regions can be asso-
ciated with the decline in cognitive performance during
normal aging.
Diffusion tensor imaging (DTI) is a non-invasive

method of measuring the diffusion of water molecules
in vivo, and is able to measure the quality of the
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neuronal fiber bundles within white matter regions of
interest (ROI) [12,19]. However, the ROI approach is
limited because it cannot attribute changes to specific
tracts within regions containing two or more white mat-
ter bundles [20,21]. Recently, tract-based analysis has
been used to investigate white matter of interest. Tract-
based analysis assembles the local diffusion tensor data
into tracts using scalar metrics, such as fractional aniso-
tropy (FA) and apparent diffusion coefficient (ADC)
[22]. Thus, tract-based analysis can evaluate the specific
anatomical localization of a single tract and allow mea-
surement throughout the length of the bundles.
There have been several studies on neurodegenerative

diseases that have reported structural differences in
hemispherical asymmetry or sex differences [23-26]. To
our knowledge, it has not been discussed whether asym-
metry or sex differences in the human brain are present
in the healthy elderly or are always a consequence of
pathological changes.
The aim of this study was to investigate the bundles of

association fibers in healthy elderly subjects using tract-
based analysis, and to evaluate hemispherical asymme-
try, sex differences and age-related changes. In the white
matter fibers, we examined the uncinate fasciculus
(UNC), cingulate fasciculus (CIG), superior longitudinal
fasciculus (SLF), inferior longitudinal fasciculus (ILF)
and inferior occipitofrontal fasciculus (IOFF).

Method
Subjects
Forty right-handed volunteers (19 males and 21 females)
participated in this study. The demographic characteristics
of the subjects are given in Additional File 1: Table S1. All
subjects were screened for medical and psychiatric condi-
tions by a psychiatrist. Assessment of cognitive function
was carried out according to the Mini-Mental State Exam-
ination (MMSE). Subjects were excluded from enrolment
if they had a history of a neurological disease, of substan-
tial head injury or a history of major psychiatric illness.
Subjects with cortical infarctions on T2-weighted images
were also excluded, whereas patients with small lacunae in
the white matter (fewer than five lesions on T2-weighted
images) were included. This study was approved by the
Ethical Review Board of Nara Medical University. Written
informed consent was obtained from each of the subjects
prior to their participation

Image data acquisition
A 1.5-T clinical MRI unit (Magnetom Sonata; Siemens
AG, Erlangen, Germany) was used to acquire the diffusion
tensor images. Diffusion-weighted images were obtained
using an echo-planar imaging (EPI) sequence (TR = 4900
ms, TE = 85 ms, b = 1000 s/mm2, 6-axis encoding, FOV =
230 mm, matrix = 128 × 128, slice thickness = 3 mm with

no gap, averaging = 6). We obtained 50 section images,
covering the whole brain. In addition, we also obtained
regular structural T1-weighted (SE TR = 500, TE = 20)
and T2-weighted (TSE TR = 4000, TE = 110) images.

DTI data processing
Diffusion tensors were computed and fiber tract maps
were created using Volume One and dTV II DTI soft-
ware developed by Masutani et al. [27] (University of
Tokyo, Diffusion Tensor Visualizer ver. 2; available at
http://www.ut-radiology.umin.jp/people/masutani/dTV.
htm). Interpolation along the z-axis was performed to
obtain isotropic data (voxel size, 0.89 × 0.89 × 0.89
mm). The eigenvector associated with the largest eigen-
value or the principal axis was assumed to represent the
local fiber direction. The tracking algorithm moved
along the principal axis. The diffusion tensor at the next
location was determined from the adjacent voxels, and
its principal axis was subsequently estimated. Tracking
lines were traced in this way, and propagated in both
anterograde and retrograde directions until the FA fell
below an assigned threshold. The settings for each trac-
tography were as follows: the FA threshold for tracking
was set at 0.18, the stop length was set at 160 steps and
the seed and target ROIs are given in Additional File 2:
Table S2. Using these data, we drew each fiber (Figures
1, 2). The dTV II software has a function that calculates
the mean FA and mean ADC (10-3 s/mm2) along the
constructed tract. We measured mean FA and mean
ADC values along the bilateral UNC, CIG, SLF, ILF and
IOFF in the total subject set, in males and in females.

Statistical analysis
Data were analyzed using the Statistical Package for
Social Science (SPSS for Windows 16.0; SPSS, Chicago,
Illinois). The averaged FA and ADC values of each fiber
for all subjects were analyzed. Differences in measured
values from the right and left hemisphere, males and
females were tested using the Mann-Whitney U-test.
The age-related changes were tested for statistical signif-
icance using Spearman’s rank correlation analysis.

Results
Asymmetry
Comparisons of the mean FA and ADC values of each
tractography between the bilateral hemispheres are
shown in Additional File 3: Table S3. There were signifi-
cant differences between each side for the ADC values
of the CIG in all subjects (right, 0.395 ± 0.0124 × 10-3

s/mm2; left, 0.402 ± 0.0174 × 10-3 s/mm2, p = 0.016)
and in males (right, 0.394 ± 0.0122 × 10-3 s/mm2; left,
0.405 ± 0.0212 × 10-3 s/mm2, p = 0.037). We did not
observe significant differences for the CIG in females or
for the other fibers.
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Sex differences
The sex differences in the mean FA and ADC values of
each tractography are shown in Additional File 4: Table
S4. There was a significant difference between the sexes
for the FA values of the right UNC (male right, 0.375 ±
0.0100; female right, 0.366 ± 0.0136, p = 0.041). We did
not observe significant differences for the ADC values of
the right UNC or for the other fibers.

Age-related changes
As regards age-related changes, we found a significant
increase in ADC values with advancing age in the right

CIG (r = 0.34, p = 0.034), left ILF (r = 0.34, p = 0.032)
and left IOFF (r = 0.31, p = 0.045). However, there was
a significant decrease in the FA values with advancing
age in the right SLF (r = -0.39, p = 0.013) (Figure 3).
We did not observe any significant correlations with
aging for the other fibers.

Discussion
Using a tract-based analysis, we have demonstrated
hemispherical asymmetry, sex differences and age-
related changes in the major white matter fibers. Tract-
based analysis with DTI is considered to be a useful

Figure 1 Diffusion tensor tractographies of the (a) UNC, (b) ILF and (c) IOFF. A light blue-colored object indicates the seed ROI, whereas a
pink-colored object indicates the target ROI. UNC, uncinate fasciculus; ILF, inferior longitudinal fasciculus; IOFF, inferior occipitofrontal fasciculus;
ROI, region of interest.
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Figure 2 Diffusion tensor tractographies of the (a) CIG and (b) SLF. A light blue-colored object indicates the seed ROI. CIG, cingulate
fasciculus; SLF, superior longitudinal fasciculus; ROI, region of interest.

Figure 3 Scatter plots and linear regression of age against (a) the mean FA of the right SLF, (b) the mean ADC of the right CIG, (c)
the mean ADC of the left ILF and (d) the mean ADC of the left IOFF. The correlation coefficients (r) and the p-values are shown. FA,
fractional anisotropy; SLF, superior longitudinal fasciculus; ADC, apparent diffusion coefficient (10-3 s/mm2); CIG, cingulate fasciculus; ILF, inferior
longitudinal fasciculus; IOFF, inferior occipitofrontal fasciculus.
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method for a white matter fiber assessment [28-30].
Using the conventional methods of ROI and FA map-
ping, it is difficult to precisely define the target because
of the possibility of contamination, i.e., two or more
white matter bundles [20,21]. Meanwhile, VBA analysis
has the limitation that anatomical interpretation of the
results is difficult because clusters of voxels will not lie
within a single tract [31]. Using tract-based analysis, we
can confirm anatomy visually, by its shape in the brain,
and eliminate the effects of contamination by other
white matter fibers. Simultaneously, we can measure the
target bundles quantitatively.
For hemispherical asymmetry, we found a difference

in the ADC values for the CIG in males and in the total
subject set. Asymmetry of the white matter has been
demonstrated previously using DTI analysis: Kubicki et
al. reported asymmetry in the FA values of the UNC,
and Peled et al. reported asymmetry in the anterior limb
of the internal capsule [32-34]. In this study, we identi-
fied asymmetry of the CIG (right < left) which is consis-
tent with a previous DTI study [12]. The CIG is known
to connect the cerebral cortex and basal ganglia with
the cingulate gyrus, and so this asymmetry is probably
related to functional lateralization of the brain.
We also showed significantly higher FA values in

males than in females for the right UNC. There are
inconsistencies among studies regarding sex differences
of the white matter – some have demonstrated a sex
difference, whereas others have refuted it. Hsu et al.
reported that females had lower FA values than males in
the right deep temporal regions, and in the left anterior
limb of the internal capsule [35], which is consistent
with our results. Whereas the sex difference was only
gray matter proportion adjustment for the effect of cere-
bral volume in the large sample size study [36]. Simi-
larly, Sullivan et al. showed no significant sex differences
in the white matter using a DTI analysis [37]. However,
these studies were different in methodology from our
current study. Namely, the former was a volumetric ana-
lysis, and the latter was a ROI based DTI analysis. The
UNC is part of the Yakovlev circuit, and connects the
orbitofrontal and temporal lobes. The UNC is recog-
nized to play an important role in the formation and
retrieval of memories, and the Yakovlev circuit is related
to emotion processing [22,38,39]. Our results might sug-
gest that there is a sexual dimorphism in the micro-
structural organization of the white matter in the
fronto-temporal region. A previous study showed the
differences in emotion processing and the performance
on verbal and memory tasks between males and females
[38]. Thus, the sex dimorphism in this study may reflect
these differences.
As regards age-related changes, we found a significant

FA decrease in the right SLF and a significant ADC

increase in the right CIG, left ILF and left IOFF. A pre-
vious study reported that neuronal changes in aging are
due to shrinkage of large neurons with a consequent
increase in the proportion of small neurons, resulting in
an expansion of the extracellular space [21]. This might
relate to our results. In previous studies of brain aging,
Abe et al. reported that, using a voxel-based analysis,
brain volume was negatively correlated with FA values
in anterior structures, whereas the mean diffusivity
(MD) was positively correlated with FA values in the
cortical gray matter and periventricular white matter
[40]. Using a tract-based analysis, Yasmin et al. reported
a significant positive correlation between age and MD in
the right UNC and bilateral fornices, and a negative cor-
relation between age and FA values in the bilateral for-
nices [21]. Furthermore, the anterior corpus callosum,
the bilateral anterior and posterior internal capsule and
the posterior periventricular regions showed a significant
age-related decrease in FA values [35]. The CIG is con-
sidered to play an important role in memory and cogni-
tion, the SLF is considered to relate to visual-spatial
cognition, and the IOFF and ILF may relate to emotion,
cognitive function and visual processing [41,42]. A
decline in these cognitive functions is observed during
normal aging. Namely, the changes of the DTI para-
meters in the CIG, SLF, IOFF and ILF may reflect this
decline.
Our present study was limited by the measurement

protocol for diffusion tensor imaging. We used a 6 axis
diffusion encoding gradient, which is a rather small
number for diffusion encoding [43]. Because the subjects
of the current study was older people, the imaging time
should be shorter by using smaller number of diffusion
encoding. Furthermore, there is a study which indicates
that number of diffusion encoding does not exert any
significant effect of visualization of the optic radiation
[44]. This is also the reason that the number of diffusion
encoding gradients.

Conclusions
To our knowledge, this is the first study to examine
the major white matter fibers using a tract-based ana-
lysis, and simultaneously examine hemispherical asym-
metry, sex differences and age-related changes. We
found hemispherical asymmetry in the ADC values for
the CIG in males and in the total subject set, and we
identified a sex difference in the FA values for the
UNC. For age-related changes, we found an increase in
the ADC values for the right SLF and left IOFF, but a
decrease in the FA values for the right SLF. We sug-
gest that consideration of these local non-pathogenic
changes is important when using tract-based analysis
for studies of patients with psychiatric or neurodegen-
erative disorders.
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Additional material

Additional file 1: Table S1. Characteristics of the participants.

Additional file 2: Table S2. Definitions of the seed and target regions
of interest for each tractography.

Additional file 3: Table S3. Comparisons of the right and left FA and
ADC values for each tractography

Additional file 4: Table S4. Comparisons of the FA and ADC values
between males and females for each tractography
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