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Abstract

Background: A number of studies have implicated the direct involvement of the liver in dengue virus (DENV)
infection, and it has been widely shown that liver cells subsequently undergo apoptosis. The mechanism by which
liver cells undergo apoptosis in response to DENV infection remains unclear. To provide further information on the
mechanism of apoptosis in DENV infected liver cells, HepG2 cells were infected with DENV 2 and analyzed for the
induction of ER stress, apoptosis and autophagy.

Results: In response to DENV infection, HepG2 cells showed the induction of both the ER resident unfolded protein
response as well as the Noxa/PUMA stress response pathways. Proteolytic activation of caspases 4, 7, 8 and 9 was
observed as well as changes in mitochondrial transmembrane potential. Increased monodansylcadaverine staining
was observed in DENV infected cells, consistent with the previously reported induction of autophagy.

Conclusions: These results are consistent with a model in which the induction of multiple ER stress pathways is
coupled with the induction of multiple cell death pathways as a mechanism to ensure the removal of infected liver
cells from the system.
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Background
Dengue virus (DENV; family Flaviviridae, genus Flavivi-
rus) is the causative agent of dengue, a mosquito-
transmitted viral disease. In humans infection results in
a wide range of clinical manifestations from a relatively
self-limiting febrile illness termed dengue fever (DF) to
more severe forms that can threaten the patient’s life
through plasma leakage in dengue haemorrhagic fever
(DHF) and dengue shock syndrome (DSS) [1]. An esti-
mated 390 million dengue infections are believed to
occur each year, of which some nearly 100 million show
manifestation of the disease at some severity level [2].
The involvement of the liver in the pathogenesis of den-
gue is suggested by evidence of hepatomegaly in dengue
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patients [3] as well as the elevated levels of serum ala-
nine aminotransferase and alkaline phosphatase [4,5].
Direct evidence of the involvement of the liver in the
disease arises from studies that have shown the presence
of dengue viral antigens in samples of human liver from
fatal cases of dengue disease [6-9].
The presence of councilman bodies (believed to be the

remains of cells undergoing apoptosis) have also been
observed in specimens of liver collected at autopsy
[9-11], and both primary kupffer cells and hepatocytes
undergo apoptosis in response to DENV infection
[12,13], although only the latter cell type is productively
infected. Several studies have investigated the mechan-
ism of apoptosis induction in liver cell lines in response
to DENV infection, although little consensus has
emerged as to which cell death pathway or pathways are
triggered, or how the process is initiated [14-18].
We have recently shown in monocytic cells that DENV

infection results in the induction of the unfolded protein
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response (UPR) and the Noxa/PUMA (p53 upregulated
modulator of apoptosis) endoplasmic reticulum (ER) stress
pathways, and that coupled with this is the activation of
both intrinsic and extrinsic apoptosis pathways [19]. In-
trinsic apoptosis pathways are primarily mediated through
mitochondria and are typified by the proteolytic activation
of caspase 9, while extrinsic apoptosis is characterized by
the involvement of death receptors and typified by the
proteolytic activation of caspase 8 [20].
The primary function of the UPR is to adapt to changes

in the environment and reestablish normal ER function
[21]. The central mediator of the ER stress response is
GRP78 (Glucose regulated protein 78 or BiP, Immuno-
globulin heavy chain binding protein) and under normal
conditions GRP78 binds to three critical ER transmem-
brane signaling proteins IRE1 (Inositol-requiring protein 1),
ATF6 (Activating transcription factor 6), and PERK
(Protein kinase RNA-like endoplasmic reticulum kin-
ase) [22]. These three genes play a critical role in the
adaptation mechanism by inducing the transcription of
ER resident chaperones, blocking the translation of
mRNAs in order to reduce the flux of the newly synthe-
sized proteins to the ER, and increasing the amount of
protein degradation [21-23]. Upon ER stress, GRP78 re-
leases IRE1 and PERK leading to homodimerization and
autophosphorylation and subsequent activation of each
protein. Activated IRE1 excises a 26-nucleotide intron
from the XBP-1 (Xbox binding protein) transcript pro-
ducing a transcription factor that induces the expres-
sion of ER resident chaperons or proteins involved in
the degradation process [24]. Oligomerized and phos-
phorylated PERK blocks the translation of most cytoplas-
mic mRNAs by phosphorylating eukaryotic initiation
factor 2α (eIF-2α) and activating the expression of further
downstream genes which are primarily involved in the
regulation of apoptosis [25]. In contrast, upon release
from GRP78, ATF6 is cleaved in the Golgi compartment
by site protease 1 and 2 (sp1, sp2) and the cleaved form
activates the expression of further chaperones and other
downstream genes [22,23]. Both IRE1and ATF6 activation
result in the up-regulation of GRP78 and as such in-
creased levels of GRP78 are a hallmark of UPR induction
[22,26-30].
Although the UPR is primarily a cell survival mechan-

ism [22], where the stress is unrelieved, apoptosis, medi-
ated by cross talk between the ER and mitochondria, is
activated [31,32]. At least four pathways have been docu-
mented which act respectively through caspase 12 [33,34],
CHOP (CCAAT/Enhancer-Binding Protein Homologous
Protein) [35,36], JNK (C-Jun N-terminal kinase) [37] and
Ca2+ [38,39]. In addition to the UPR response, the Noxa/
PUMA pathway which is transcriptionally regulated by
p53 is also activated under conditions of ER stress and
leads to the eventual induction of apoptosis [40].
This study sought to comprehensively characterize the
induction of apoptosis in DENV 2 infected HepG2 cells,
and to determine whether there was activation of mul-
tiple ER stress pathways consistent with our previous
observations in monocytic cells [19].

Results
Activation of ER stress response pathways
In our previous study we observed that experiments on
activation of the UPR are prone to misinterpretation
when undertaken on cell cultures with a low percentage
of infection. We therefore initially determined the per-
centage of infected HepG2 cells after infection with
DENV-2 at m.o.i.s of 1 and 10. At 24 hours post infec-
tion, percentage infection was determined by flow cy-
tometry after staining with an antibody directed against
DENV E protein. Results (Figure 1a) showed that ap-
proximately 30% of cells were infected after infection at
m.o.i. 1, while nearly 60% of cells were infected when
m.o.i 10 was used. An m.o.i. of 10 was used in all subse-
quent experiments.
To investigate the activation of the UPR pathway in

response to DENV infection, DENV 2 (strain 16681)
was used to infect HepG2 cells under standard condi-
tions at 10 p.f.u./cell in parallel with mock infected
and tunicamycin treated cells. Cells were harvested at
various time points and examined for the presence of
the ER stress specific splicing product of XBP-1 by RT-
PCR. Results show that both tunicamycin treated and
DENV 2 infected HepG2 cells showed the presence of
the spliced product of XBP-1 (Figure 1b) while no
spliced product was seen in mock infected cells. The
presence of a heteroduplex product was seen in all cells
(tunicamycin treated, mock and dengue infected) as has
been noted by others [41-43]. The presence of the
spliced product of the XBP-1 transcript demonstrate
the activation of the UPR by DENV 2 infection, in
agreement with the previous study of Umareddy and
colleagues [43] in A549 (human alveolar basal epithe-
lial) cells, and Klomporn and colleagues in U937 mono-
cytic cells [19].
As up-regulation of GRP78 is a common hallmark of

UPR activation induction, [22,26-30] and in particular is
up-regulated by the activation of XBP-1 [44], the level of
GRP78 was examined by western blot analysis. Results
showed the over-expression of GRP78 in response to
DENV 2 infection (Figure 1c) as has been noted by
others [45].
We next examined whether the UPR sensor molecule

PERK was found in association with GRP78 (Figure 2a).
As would be expected, in mock infected cells a high de-
gree of colocalization was observed between GRP78
and PERK (mean Pearson correlation coefficient 0.75,
95% CI 0.71-0.79). Infection with DENV 2 significantly



Figure 1 ER stress in DENV 2 infected HepG2 cells. (a) HepG2
cells were either infected with DENV 2 at m.o.i. 1 or 10 or mock
infected and examined for the percentage of infected cells at
24 hours post infection by flow cytometry. (b) and (c) HepG2 cells
were either infected at m.o.i. 10 or mock infected or treated with
tunicamycin and after the times indicated examined for the
expression of (b) XBP-1 and actin by RT-PCR or (c) GRP78 by
western blotting.
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decreased the degree of colocalization (mean Pearson
correlation coefficient 0.50, 95% CI 0.47-0.55; P < 0.001).
Similarly, a significantly lower colocalization was ob-
served between GRP78 and ATF6 in DENV 2 infected
cells (mean Pearson correlation coefficient 0.42, 95% CI
0.40-0.46 p < 0.001) in comparison to mock infected cells
(mean Pearson correlation coefficient 0.8, 95% CI 0.78-
0.84) (Figure 2a).
Confocal analysis supported the western blot analysis

showing over-expression of GRP 78 (Figure 2b). As
previous reports have shown an interaction between
GRP78 and DENV 2 E protein [46-48] and we have pro-
posed that this interaction is serotype specific [46,48] we
therefore investigated the colocalization of DENV 2 E
protein in relationship to GRP78. A high level of
colocalization between GRP78 and DENV 2 E protein
was observed in DENV 2 infected samples (mean Pear-
son correlation coefficient 0.70) (Figure 2c).
Dissociation of PERK from GRP78 leads to oligomerization

and activation of the cytosolic kinase domain which
leads to the subsequent phosphorylation of eIF-2α. The
phosphorylation of eIF-2α was therefore investigated in
DENV 2 infected HepG2 cells in parallel with tunicamycin
treated control cells. Results (Figure 3a) showed an initial
downregulation of phosphorylation of eIF-2α and an in-
crease on days 2 and 3 p.i. Similarly an initial down regula-
tion of phosphorylation of eIF-2α was observed in
tunicamycin treated cells, but higher levels were observed
on day 2 post treatment.
Noxa, PUMA and CHOP
Noxa and PUMA are transcriptionally regulated ER
stress response genes that promote the induction of
apoptosis. Expression of these two genes was examined
by semi-quantitative RT-PCR. A clear induction of both
genes was seen (Figure 3b), although induction of
PUMA appeared to occur somewhat before the induc-
tion of Noxa. Similarly, a clear induction of CHOP was
observed as early as 24 hours post infection (Figure 3c).
These results were confirmed by real time PCR and ex-
pression of all three genes was shown to be significantly
up regulated (See Figure 4). The delayed expression of
Noxa as compared to PUMA was confirmed by the real
time PCR analysis.
Apoptosis
In a previous study [18] we documented the induction
of apoptosis in DENV 2 infected HepG2 cells through
the observation of chromatin condensation, the presence
of a DNA ladder and increased Annexin V/propidium
iodide staining as well as a reduction in cell numbers in
infected cultures as opposed to mock cultures. As that
study was undertaken at a lower multiplicity of infection
than the present study, we initially undertook a cell via-
bility assay to determine whether a deficit in cell number
was seen under the higher infection conditions, and
whether this was associated with increased numbers of
apoptotic cells as assessed by Annexin V/propidium iod-
ide staining. Results (Figure 5) confirmed our previous
observations at the lower multiplicity of infection. We
further documented clear morphological changes in
DENV 2 infected HepG2 cells as opposed to mock
infected cell (Figure 6a).



Figure 2 Activation of the UPR in DENV 2 infected HepG2 cells. HepG2 cells were either infected with DENV 2 at m.o.i. 10 or mock infected
and examined at 24 hours post infection by confocal microscopy for the expression of (a) GRP78 and PERK or GRP78 and ATF6 or (b) GRP78
alone or (c) GRP78 and DENV E protein. For (a) and (c) representative merged images are shown.
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To confirm DNA fragmentation, cells were directly
analyzed for DNA content by flow cytometry after
propidium iodide staining and analyzed for the pres-
ence of a sub-G1 population. Results (Figure 6b)
show that a significantly increased sub-G1 population
Figure 3 Activation of ER stress responses in DENV 2 infected
HepG2 cells. HepG2 cells were either infected at m.o.i. 10 or mock
infected or treated with tunicamycin and after the times indicated
examined for the expression of (a) p-eIF-2α, eIF-2α and actin by
western blotting or (b) Noxa, PUMA and (c) CHOP by RT-PCR.
was present in infected cells as early as 24 hours
post infection.

Mitochondrial transmembrane potential (Δψm) in DENV 2
infection
Loss of mitochondrial function is a common hallmark
of apoptosis and can be observed by a decrease in mito-
chondrial membrane potential. To determine whether
there was a loss of mitochondrial membrane potential
in response to DENV infection, HepG2 cells were
either mock infected, or infected with DENV 2 at 10 p.f.u./
cell. At 24 or 48 hours post infection cells were incu-
bated with DiOC6(3) for 30 minutes. The cells were
harvested and washed twice with PBS prior to being
lysed and homogenized in deionized water. The concen-
tration DiOC6(3) retained was measured by fluorescent
spectrophotometery at 488 nm excitation and 500 nm
emission. The retention of DiOC6(3) was compared
against mock-infected cells as control. DENV 2 infected
cells showed a significant (p < 0.05) reduction in mito-
chondrial transmembrane potential (Δψ) at 48 hours
post infection (Figure 6c). Direct microscopic examin-
ation of DiOC6(3) stained cells showed an increased
punctuate staining pattern as opposed to mock infected
cells (Figure 6d).

Activation of caspases in DENV 2 infected HepG2 cells
To investigate the proteolytic activation of caspases,
mock-infected or DENV 2 infected cells were harvested
at various time points post-infection and total protein
was extracted and then separated by electrophoresis on
15% SDS-polyacrylamide gels. The proteins were subse-
quently either transferred to nitrocellulose membranes
and probed with antibodies against caspases 4, 7, 8 and



Figure 4 Quantitative real time PCR analysis of expression of Noxa, PUMA, CHOP and TRAIL. HepG2 cells were either infected at m.o.i. 10
or mock infected and after the times indicated examined for the expression of (a) Noxa, (b) PUMA, (c) CHOP and (d) TRAIL by quantitative real
time PCR. The relative expression levels of CHOP, Noxa, PUMA and TRAIL were normalized against actin using the comparative CT method
(2-ΔΔCT method). * indicates p < 0.05.
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12 or used in an ELISA assay to determine the activa-
tion of caspase 9. For the western analysis, each anti-
body is able to detect both procaspase and active
cleaved forms of the caspases and membranes were
subsequently probed with a mouse monoclonal anti-
actin or anti GAPDH antibody as an internal control.
Figure 5 Cell viability in DENV 2 infected HepG2 cells. HepG2 cells we
(a) cell viability by trypan blue exclusion assay on days 1, 3, 5 and 7 p.i., (b
iodide double staining and analysis by flow cytometery on day 3 p.i.
Western analysis (Figure 7a-d) showed the proteolytic
cleavage of caspases 4, 7 and 8 in DENV 2 infected cells
indicated by the presence of active forms of these pro-
teins, while the ELISA assay confirmed the activation
of caspase 9 seen in response to DENV 2 infection of
HepG2 cells (p < 0.05; Figure 7e). As activation of all
re mock infected or infected with DENV 2 at m.o.i 10 and analyzed for
) the percentage of apoptotic cells as assessed by AnnexinV/propidium



Figure 6 Apoptosis in DENV 2 infected HepG2 cells. HepG2 cells were mock infected or infected with DENV 2 at m.o.i 10 and analyzed for
(a) cell morphology by light microscopy on days 1 to 3 p.i., (b) the presence of a sub-G1 DNA population as assessed by flow cytometry after
staining with propidium iodide for days 1 to 5 p.i., (c) membrane mitochondrial potential after staining with DiOC6(3) and analysis by fluorescent
spectrophotometery on days 1 and 2 p.i. with additional direct observation of the cells under a fluorescent microscope (d). *indicates p < 0.05.
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examined caspases was seen in DENV 2 infected cells, we
also examined the expression of caspase 12 as a control.
In human cells and cell lines, caspase 12 is normally
inactive due to the inheritance of mutated alleles of
this protein [49]. As expected, no activation of caspase 12
was seen in response to DENV 2 infection (Figure 7d)
suggesting that activation of caspases 4, 7, 8 and 9 was a
direct and specific consequence of DENV 2 infection.

Expression of TRAIL
We have previously documented increased expression
of TRAIL in both HepG2 cells and in primary



Figure 7 Pathways of apoptosis induction in DENV 2 infected HepG2 cells. HepG2 cells were either infected at 10 p.f.u./cell or mock
infected and examined at the times indicated by (a, b, c, d) Western blot for the activation of caspases 4, 7, 8 and 12 or (e) by ELISA for
activation of caspase 9 (solid bars day 1 p.i., open bars day 2 p.i.). (f) DENV infected HepG2 cells were examined for the expression of TRAIL by
RT-PCR and (g) by microscopy after staining with MDC for the presence of autophagic vacuoles. * indicates p < 0.05.
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hepatocytes in response to DENV 2 infection [13]. Be-
cause of the recent retraction of the seminal paper pos-
tulating the activation of TRAIL as a critical component
of the extrinsic activation of apoptosis in response to
DENV infection of liver cells [50], we reconfirmed the
increased expression of TRAIL in response to DENV 2
infection. Results (Figure 7f ) showed an increase in
TRAIL expression in response to DENV 2 infection,
consistent with our earlier report [13]. The significant
an early increase in TRAIL expression was confirmed
by real time PCR (see Figure 4).
Induction of autophagy in response to DENV 2 infection
We have previously extensively documented the induc-
tion of autophagy in response to DENV 2 infection
of HepG2 [51] and other cells [52]. To confirm the acti-
vation of autophagy in response to DENV 2 in this
study, HepG2 cells were either mock infected or infected
with DENV 2 and stained with the acidotropic dye
monodansylcadaverine (MDC) and examined under a
fluorescent microscope on days 1 and 2 p.i. Results
showed a notable increase in MDC positive vacuoles
(Figure 7g), consistent with the activation of autophagy
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in DENV 2 infected HepG2 cells as documented previ-
ously [51].

Discussion
The involvement of the liver in dengue infections has
been the subject of some controversy. However, a signifi-
cant amount of evidence from primary cells, animal
model studies and in vitro experiments suggests that the
liver is directly involved in the pathogenesis of the dis-
ease, and that hepatocytes are a bona fide target of
DENV (reviewed in [53]). Similarly, several studies in
both primary [13] and transformed [16-18,54-58] liver
cells have documented the induction of apoptosis in re-
sponse to infection with DENV. However, the induction
of apoptosis has been proposed to occur by different
groups by both intrinsic (mitochondrially mediated) and
extrinsic (death receptor mediated) pathways. The re-
sults seen here, specifically the activation of both
caspases 8 and 9, the decrease of mitochondrial mem-
brane potential and the up regulation of TRAIL support
a model in which both intrinsic and extrinsic pathways
are activated, similar to our recent report on monocytic
cells where both intrinsic and extrinsic apoptosis path-
ways were independently activated [19]. As such, the ac-
tivation of multiple, independent apoptosis pathways in
response to DENV infection maybe a common mechan-
ism, irrespective of cell type. The activation of multiple,
independent apoptosis pathways in liver cells in response
to DENV infection would also tend to unify the dispar-
ate studies that propose activation only through one spe-
cific pathway via one of several proposed mechanisms
[16,17,56-58].
In a study in 2008 Nasirudeen and Liu [16] proposed

that apoptosis in liver cells occurred via the p53
dependent activation of mitochondrially mediated (i.e.
intrinsic) apoptosis. However, the proposal of p53
playing a significant role in the induction of apoptosis in
liver cells is inconsistent with an earlier study which had
shown the robust induction of apoptosis in the p53
negative cell line Hep3B [18].
However, as shown here, both Noxa and PUMA,

which are ER stress response genes transcriptionally reg-
ulated by p53, are up-regulated in response to infection
and therefore where p53 is functional in a cell, it may
well play a role in mediating the apoptotic response.
However, even in the absence of p53, apoptosis can still
occur through the activation of non-p53 dependent
pathways, again supporting our previous contention in
monocytic cells that apoptosis is induced by multiple in-
dependent pathways [19].
More recently Nasirudeen and Liu proposed that

caspase 1 is critical to the induction of apoptosis [17]
in DENV infected cells. Caspase 1 is a human “inflam-
matory caspase” together with caspases 4, 5 and 12,
although caspase 12 is normally inactive in humans [49].
Caspase 1 is activated by association with the so called
“inflammasomes” which are large oligomeric complexes
that assemble in response to signals such as the sensing
of pathogen associated molecular patterns (PAMPS) or
the presence of danger associated molecular patterns
[59]. Recent evidence has suggested that caspase 1 acti-
vation requires the proceeding activation of caspase 4
[60] and earlier studies have suggested that caspase 4 is
localized to the ER membrane and that it may be acti-
vated directly by ER stress [61]. In this way, the activa-
tion of caspase 4 as a result of ER stress and the
subsequent activation of caspase 1 (with or without as-
sociation of the inflammasome) might represent yet an-
other independent pathway by which DENV infection
results in apoptosis.
In other studies, the dengue capsid protein has been

implicated as playing a role in the mediating the induc-
tion of intrinsic apoptosis in liver cells [55,56,58].
Limjindaporn and colleagues proposed that the nuclear
interaction between the DENV capsid protein and the
death domain associated protein Daxx is essential for
the induction of apoptosis [56,58], and subsequently that
the DENV capsid protein induces apoptosis through the
action of either CD137 or RIPK2 [57]. However, a recent
study by Jianling and colleagues [55] proposed that the
interaction between DENV capsid protein and the cal-
cium modulating cyclophilin-binding ligand (CAML)
serves to subvert the apoptotic process. The contradict-
ory results suggesting that the DENV capsid protein ei-
ther promotes [56,58] or inhibits [55] apoptosis suggests
that further research is required to define the function
of this protein in the apoptotic process.
The induction of extrinsic apoptosis in DENV infected

liver cells was originally proposed in a study that has
now been retracted [50]. In the original study it was pro-
posed that DENV infection resulted in the up-regulation
of TRAIL which interacted with the Apo2L/TRAIL re-
ceptor DR5/TRAIL-R2 expressed on the surface of liver
cells. This model was subsequently supported by our
studies in both primary and transformed cells which
showed the increased expression of TRAIL [13] as re-
confirmed here. Elevated levels of TRAIL in response
to DENV infection have been documented for human
primary monocytes, B cells and dendritic cells [62] as
well as for HUVECs (human umbilical vein endothelial
cells) [63] and elevated levels of TRAIL were found in
DENV infected patients in the febrile phase as compared
to normal controls [62]. Warke and colleagues observed
that TRAIL expression reduced viral titers in DENV
infected HUVECs, and they proposed that TRAIL played
an antiviral role in an apoptosis independent manner
[63]. However, as was observed in the now retracted
Matsuda study [50], liver cells express the Apo2L/
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TRAIL receptor DR5/TRAIL-R2 and upon binding of
TRAIL the clustered DR5 receptor complex recruits,
through its cytoplasmic domain the adapter molecule
FADD (Fas-associated death domain) which in turn re-
cruits pro-caspase 8, forming a death induced signaling
complex (DISC) which directly results in the activation
of caspase 8 [64,65]. Our results showing the increased
expression of TRAIL and the activation of caspase 8
would therefore support the extrinsic induction of apop-
tosis in liver cells mediated by TRAIL, and suggests that
the interaction between TRAIL and DENV infected cells
is cell type specific. In this way, the elevated levels of
TRAIL seen in serum of febrile DENV infected patients
[62] could serve to both remove infected liver cells and
protect other cells such as endothelial cells through its
antiviral activities [63].
Interestingly, we observed a significant activation of

caspase 9 on day 1 post infection, while caspase 8 was
shown to be activated from day 2 post infection. Caspase
7 which is activated by both intrinsic and extrinsic path-
ways showed significant levels of activation from day 1,
and less thereafter. The delayed activation of caspase 8
(as compared to caspase 9) would also support activation
of this pathway through TRAIL, which showed signifi-
cant levels of expression only after 24 hours infection.
Caspase activation was predominantly shown to be an
early event, with apparently less activation at the later
stages. However, as the cells are constantly dying as a
consequence of the infection, the actively infected cells
may represent a smaller and smaller proportion of the
cells in culture as the non-infected cells may outgrow
the infected cells.
Induction of the UPR as a consequence of DENV in-

fection in several cell lines has been well documented
[19,43,66,67] and it is currently thought that it is the in-
flux of nascent unfolded proteins to the ER as a conse-
quence of infection is the critical event in triggering the
UPR [67] and, as shown here for the first time, the UPR
is activated in response to DENV infection of liver cells.
Prolonged activation of the UPR is known to trigger
apoptosis through a number of pathways [33,34,36-39],
several of which lead directly to mitochondrially medi-
ated (intrinsic) apoptosis and, as documented here by
cleavage of caspase 9 and changes in mitochondrial
membrane potential, mitochondrially mediated apoptosis
is induced in DENV infected liver cells. The observation
of reduced mitochondrial membrane potential in DENV
infected liver cells is consistent with the observations of
others [54].
Activation of PERK leads to the phosphorylation of

the translation initiation factor eIF-2α, which leads to
the attenuation of translation initiation with the excep-
tion of ATF4 and its downstream target CHOP (also
known as GADD153) whose expression is increased
when eIF-2α is phosphorylated [22,68], all of which were
observed to occur under conditions of DENV infection
of HepG2 cells. Critically, prolonged expression of
CHOP, which is also a target of the other branches of
the UPR [22,68] results in the induction of apoptosis
through a number of potential pathways, such as
through the Bcl2 family members or through the
ERO1α–IP3R–Ca2 + −CaMKII pathway both of which
end in mitochondrially mediated apoptosis [69]. In a re-
cent study Pena and Harris [70] investigated the induc-
tion of the unfolded protein response in response to
DENV infection in human fibrosarcoma 2fTGH cells
and in a number of knockout mice embryonic fibroblast
(MEF) cell lines. Pena and Harris reported the time
dependent modulation of the UPR, but predominantly
focused on the first 12 hours of infection [70]. In par-
ticular they reported a peak of phosphorylation of eIF2α
at 6 hours post infection after which levels returned to
mock levels, while in this study we see a down regula-
tion at 24 hours, and a significant increase on days 2
and 3 p.i. Somewhat surprisingly, while Pena and Harris
report an increase in expression of CHOP, they report
no activation of caspase 9 or and indeed, no induction
of apoptosis in response to infection [70]. Given that
apoptosis in response to dengue infection has been
reported in numerous studies in a number of different
cell types [9,17-19,57,71-80] the significance of their ob-
servations remains unclear.
Studies have shown that activation of the UPR can

lead to the induction of apoptosis through activation of
caspase 12 [33,34]. However, caspase 12 in humans is
predominantly inactive due the high occurrence of in-
activating mutations in this gene in the human popula-
tion [49]. As shown here, no activation of caspase 12
was seen in response to DENV infection consistent with
its inactive status, however the lack of processing seen
for caspase 12 confirms the specificity of activation of
the other caspases examined in this study.
Induced ER stress and the activation of the UPR has

been well characterized as an inducer of autophagy
[81-83]. We and others have previously extensively char-
acterized the induction of autophagy in liver cells in re-
sponse to DENV infection [51,84-86], and in this study
showed increased staining with MDC in DENV infected
cells. MDC is a fluorescent acidotropic dye that was ori-
ginally believed to specifically label autophagic vacuoles
[87]. Subsequent investigations have suggested that
MDC stains vacuoles late in the autophagic process [88].
While not a rigorous analysis of autophagy [89], it serves
to confirm our earlier studies in the same cell line and
with the same virus [51,85]. Autophagy is believed to be
induced in response to ER stress as an attempt to de-
crease the stress through increased degradation of
misfolded proteins [90], and studies have suggested that
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autophagy can be induced through either PERK [90,91]
or IRE1 [90,92]. By relieving ER stress, autophagy can
therefore act in a pro-survival manner and can inhibit
the onset of apoptosis [93]. However, studies have shown
that prolonged activation of autophagy can promote cell
death through both apparently apoptosis dependent and
apoptosis independent mechanisms [93].

Conclusions
Our results show that in response to DENV infection of
liver cells, there is the activation of multiple ER stress
pathways and multiple modes of cell death, namely the ac-
tivation of intrinsic, extrinsic and possibly inflammasome
mediated apoptosis pathways, as well as the activation
of autophagy which can further lead to (intrinsic) apop-
tosis dependent and apoptosis independent cell death.
These results suggest that removal of DENV infected
cells from the liver is ensured through the activation of
multiple pathways.

Methods
Viruses, cells and treatments
The human hepatoma cell line HepG2 (ATCC No. HB-
8065) was cultivated as described previously [94]. Dengue
virus serotype 2 (DENV 2; strain 16681) was propagated
in the Aedes albopictus derived cell line C6/36 (ATCC No.
CRL-1660). The virus was partially purified by centrifuga-
tion to remove cell debris and stored frozen at −80°C.
Virus titer was determined by standard plaque assay as de-
scribed elsewhere [95]. HepG2 cells were treated with
2 μg/ml tunicamycin (T7765, Sigma-Aldrich, Milwaukee,
WI) as indicated.

Cell morphology and viability
HepG2 cells were seeded for 24 hours under standard
growth condition, cells were either mock-infected or
infected at 10 p.f.u./cell with DENV 2 for up to 7 days post
infection. On days 1 to 3 p.i., cells were examined directly
under an inverting light microscope (Nikon Eclipse
TS100, Nikon Instruments Inc., Melville, NY) and on days
1, 3, 5 and 7 p.i. the live cell number was determined by a
trypan blue exclusion assay. The experiment was under-
taken independently in triplicate for each day.

Semi-quantitative RT-PCR
Total RNA was isolated using TRI reagent (Molecular
Research Center, Inc., Cincinnati, OH) according to the
manufacturer’s instructions. RNA was transcribed to
cDNA using ImProm-II™ reverse transcriptase (Promega,
Madison, WI). cDNA amplifications for XBP-1, Noxa,
PUMA, TRAIL, CHOP and actin were undertaken
exactly as previously described, using the primers and
cycle conditions described previously [13,19]. All prod-
ucts were analyzed on 2% agarose gels.
Quantitative real time PCR
Mock infected or HepG2 cells infected with DENV 2 at
m.o.i. 10 were collected at the indicated time points and
total RNA extracted using TRI Reagent (Molecular Re-
search Center, Inc., Cincinnati, OH). Dnase I (Promaga,
Madison, WI) was use to remove genomic DNA. Subse-
quently 1 μg/mL of the RNA was use to obtain cDNA
using Oligo (dT) (Bio Basic, Inc., Ontario, Canada) and
Improm-II ™ reverse transcriptase enzyme (Promega,
Madison, WI). Quantitative real time PCR reactions
were performed based on SYBR technique by using the
KAPA SYBR FAST qPCR Kit 2X Master MIX (Kapa
Biosystems Inc, Woburn, MA) in a Mastercycler ep
realplex real time PCR system. Reactions were under-
taken with an initial 3 minutes at 95°C, followed by de-
naturation at 95°C for 10 secs, annealing at 60°C for 30
secs and extention at 72°C for 20 secs for 40 cycle.
Primers used were CHOP (CHOPfw: 5′-ACCAGGAA
ACGGAAACAGAGTGGT-3′) and (CHOPrv: 5′-TCC
TGCTTGAGCCGTTCATTCTCT-3′) Noxa (Noxafw: 5′-
AGTCGAGTGTGCTACTCAACTCAG-3′) and (Noxarv:
5′-AGGTTCCTGAGCAGAAGAGTTTGG-3′) PUMA
(PUMAfw: 5′-ACGACCTCAACGCACAGTACGA-3′) and
(PUMArv: 5′-TAATTGGGCTCCATCTCGGG-3′) TRAIL
(TRAILfw: 5′- CAACTCCGTCAGCTCGTTAG-3′) and
(TRAILrv: 5′- TGCCCACTCCTTGATGATTC -3′) and
Actin (Actinfw :5′-ACCAACTGGGACGACATGGAGAA
A-3′) and (Actinrv: 5′-TAGCACAGCCTGGATAGCAAC
GTA-3′). The relative expression levels of CHOP, Noxa,
PUMA and TRAIL were normalized against actin using the
comparative CT method (2-ΔΔCT method).

Fluorescence confocal microscope imaging and
quantitation
Cells grown on cover slips were washed twice with 1x
PBS followed by immersion in 100% ice-cold methanol
for 20 minutes. Cells were subsequently washed twice
with 1xPBS before incubation for 10 minutes with
1xPBS containing 0.3% Triton-X100. Cells then were
blocked with 5% FBS in 1xPBS containing 0.03% Triton-
X100 for 1 hour at room temperature. Cells were subse-
quently incubated overnight with two appropriate
primary antibodies at 4°C followed by incubation with
two appropriate secondary for 1 hr at room temperature
followed by three washes with 1x PBS containing 0.03%
Triton-X100 before mounting. Antibodies used were a
1:10 dilution of rabbit polyclonal anti GRP78 antibody
(sc-13968; Santa Cruz Biotechnology Inc., Santa Cruz,
CA.) followed by either a 1:50 dilution of a Rhodamine
Red X conjugated goat anti rabbit IgG antibody (111-
295-144; Jackson, West Grove, PA) or a 1:300 dilution of
a FITC conjugated donkey anti rabbit IgG antibody (sc-
2090; Santa Cruz Biotechnology Inc.), a 1:10 dilution
of a goat polyclonal anti GRP78 antibody (sc-1050; Santa
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Cruz Biotechnology, Inc) followed by a 1:100 dilution
of a Cy5 conjugated rabbit anti goat IgG antibody
(81–1616; Invitrogen, Grand Island NY), a 1:200 dilution
of mouse monoclonal anti dengue complex (MAB8705,
Chemicon, EMD Millipore Corporation, Billerica, MA
CA) followed by a 1:10 dilution of a FITC conjugated goat
anti mouse IgG antibody (02-18-06; KPL, Guilford, UK), a
1:50 dilution of a mouse monoclonal anti ATF6 antibody
(IMG-273; Imgenex, San Diego, CA) followed by a 1:10
dilution of a FITC conjugated goat anti mouse IgG (02-
18-06; KPL, Gaithersburg, MD), a 1:50 dilution of a goat
polyclonal anti PERK antibody (sc-9481; Santa Cruz
Biotechnology, Inc.) followed by a 1:100 dilution of a Cy5
conjugated rabbit anti-goat IgG (81–1616; Invitrogen).
Fluorescently labeled cells were observed under an Olym-

pus FluoView 1000 (Olympus Corporation, Shinjuku-ku,
Tokyo) confocal microscope equipped with Olympus
FluoView software v. 1.6 or a Carl Zeiss Laser scanning sys-
tem LSM510 (Carl Zeiss Advanced Imaging Microscopy,
Jena, Germany) equipped with Zeiss LSM5 Image Browser
software version 3.2.0115. Images were recorded in 3 chan-
nels. Fifteen fields were examined for each experiment and
representative results shown. Pearson correlation coeffi-
cients for co-localization were determined as described
elsewhere [51].

Fluorescent microscopy
For monodansylcadaverine (MDC) and 3,3′-dihexyloxacarbo-
cyanine Iodide (DiOC6(3)) staining, HepG2 cells in-
fected with DENV 2 at 10 pfu/cell or mock infected
were incubated with 0.05 mM MDC in PBS at
37°C for 1 hour or 100 nM DiOC6(3) (Sigma-Aldrich,
Milwaukee, WI) for 30 minutes before examina-
tion under a fluorescence microscope (Olympus
BX61, Olympus).

Sub G1 analysis
To determine the DNA fragmentation upon infection in
DENV 2 infected cells, HepG2 cells were either mock
infected or infected with DENV 2 at 10 p.f.u./cell and in-
cubated for up to 5 days p.i. Cells were collected on the in-
dicated days post infection and washed with 1x PBS. Cells
were then fixed with 70% ethanol in 1xPBS. After being
washed with 1xPBS, cells were treated with 10 mg/ml
RNase A for one hour, and then incubated with 1 mg/ml
propidium iodide (PI) for 15 minutes before analysis by
flow cytometry (BD FACSCalibur, BD Biosciences, San
Jose, CA). Experiments were undertaken independently in
triplicate. In data analysis cell debris was gated out and
the R1 population plotted in histogram form.

Western blot analysis
Mock infected or dengue infected cells were collected
by scraping at various times post infection and total
proteins extracted and subjected to western blot analysis
exactly as described previously [19,51,85]. Membranes
were blocked with 5% skim milk in TBS-T at room
temperature for 1 hr and subsequently incubated for
2 hr with an appropriate primary antibody, followed by
incubation with an appropriate secondary antibody for
1 hr at room temperature.
Primary antibodies used were mouse monoclonal anti-

bodies against caspase 8 (1C12, Cell Signaling Technol-
ogy, Inc., Danvers, MA), caspase 7 (C7, Cell Signaling
Technology), actin (sc-8432, Santa Cruz Biotechnology
Inc.), glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(sc-32233, Santa Cruz Biotechnology, Inc.) and dengue
nonstructural protein 1 (NS1) (ab41616, Abcam plc,
Cambridge, UK) followed by a horseradish peroxidase
(HRP)- conjugated rabbit anti-mouse IgG (A9044, Sigma-
Aldrich) as well as rabbit polyclonal antibodies against
GRP78 (SC-13968, Santa Cruz Biotechnology Inc.),
phospho-eIF-2α (9721, Cell Signaling Technology), eIF-2α
(9722, Cell Signaling Technology), caspase 12 (C2088-58,
United States Biological, Swampscott, MA) followed by a
horseradish peroxidase conjugated goat anti-rabbit IgG
(31460, Pierce, Rockford, IL) as well as goat polyclonal anti-
bodies directed against caspase 4 (ab27485, Abcam plc)
and actin (sc-1616, Santa Cruz Biotechnology Inc.) followed
by a horseradish peroxidase conjugated donkey anti-goat
IgG (PA1-86326, Pierce).
The signals were developed using the ECL Plus West-

ern Blotting Analysis kit (Amersham Pharmacia Biotech,
Piscataway, NJ).

Mitochondrial transmembrane potential (Δψm)
measurement
HepG2 cells either mock infected or infected with
DENV 2 at 10 p.f.u./cell were incubated with 100 nM
3,3′-dihexyloxacarbocyanine iodide (DiOC6(3)); Sigma-
Aldrich, Milwaukee, WI) for 30 min after which cells
were washed with PBS and then harvested by centrifuga-
tion at 700 × g for 5 min. The supernatant was removed,
and the pellet was resuspended and washed again in
PBS. The pellet was then lysed by the addition of 600 μl
of deionized water followed by sonication. The concen-
tration of retained DiOC6(3) was read using a fluores-
cent spectrophotometer (FP6300, Jasco, Essex, UK) at
488 nm excitation and 500 nm emission.

Annexin V/propidium iodide double staining
HepG2 cells were either mock-infected or infected with
DENV 2 at 10 p.f.u./cell. On day 3 post-infection cells were
harvested by centrifugation and washed twice with PBS.
The cells were double stained with 5 μl of 20 μg/ml FITC-
conjugated annexin V and 10 μl of 50 μg/ml propidium
iodide in 400 μl binding buffer (Becton Dickinson, Franklin
Lakes, NJ). After 15 min cells were analyzed by flow
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cytometry (FACSCalibur, BD Biosciences, San Jose, CA)
using the CELLQuest™ software (BD Biosciences).

Caspase 9 assay
A total of 5×105 HepG2 cells were grown in 6-well tis-
sue culture plate for 24 hours prior to mock-infection or
infection with DENV 2 at 10 p.f.u./cell. Caspase 9 activ-
ity was analyzed using the Caspase 9 Colorimetric Activ-
ity Assay Kit (Chemicon, Temecula, CA). Briefly the
cells were collected and lysed with kit supplied lysis buf-
fer. Cell lysate was incubated on ice for 10 min prior to
centrifuging at 10,000 × g for 5 min. Supernatant
containing cytosolic extract was transferred to a fresh
tube. Protein concentration for each sample was then
analyzed by Bradford assay. The sample was incubated
with caspase 9 substrate in supplied assay buffer at 37°C
for 1 hour. Caspase 9 activity was determined by reading
the optical density at 405 nm and normalized according
to the protein concentration of each sample.

Statistical analysis
Data was analyzed using the GraphPad Prism program
(GraphPad Software Inc., CA). Statistical analysis of sig-
nificance was undertaken by Paired sample test using
SPSS (SPSS, Inc., Chicago, IL). For all comparisons, a
P-value ≤ 0.05 was taken as significant.
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