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Abstract

Background: The spread of an infectious disease is determined by biological and social factors. Models based on
cellular automata are adequate to describe such natural systems consisting of a massive collection of simple
interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting
from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the
individual behaviour and the transmission dynamic.

Methods: An epidemic is characterized trough an individual–based–model built upon cellular automata. In the
proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an
epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and
implement control strategies.

Results: A cellular automata model to study the time evolution of a heterogeneous populations through the various
stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and
social factors that determine the dynamic of the desease. Different assumptions made to built the classical model
were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density
population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and
ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its
influence on the transition rate and the reproductive ratio of disease.

Conclusions: The contact rate and spatial distributions have a central role in the spread of a disease. For low density
populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The
spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a
central role in the dynamics of the desease.

Background
The spread of infectious disease is determined by an inter-
play of biological and social factors [1]. Biological factors
are, among others, the virulence of an infectious agent,
pre-existing immunity and the pathways of transmission.
A major social factor influencing disease spread is the
arrangement of potentially contagious contacts between
hosts. For instance, the distribution of contacts among
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themembers of a population (degree distribution) strongly
affects the population spread patterns: Highly connected
individuals (a population with a high degree distribution)
become infected very early in the course of an epidemic,
while those that are nearly isolated (a population with a
low degree distribution) become infected very late, if at
all [2-4]. If the degree distribution follows a power law,
the transmission probability necessary to sustain a disease
tends to zero [5-7].
Another important structural property that regulate the

spread of diseases is the number of contacts an individ-
ual has in a period of time (clustering of contacts). High
clustering of contacts means higher local spread within
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cliques and consequently a rapid local depletion of suscep-
tible individuals. In extreme cases, infections get trapped
within highly cohesive clusters. Random mixing is known
to overestimate the size of an outbreak [8], whereas the
local depletion caused by clustering remarkably moder-
ates the rates of disease spread [9,10]. For most of the
diseases transmitted by close physical contact, the num-
ber of contacts that can be realistically made within the
infectious period has a clear upper limit. The mean value
of potentially contagious contacts can be interpreted in
a meaningful way, since the distribution of daily contacts
is unimodal with a “typical” number of contacts [11,12].
Recent studies combining survey and modelling showed
that the repetition of contacts plays a relevant role in
the spread of diseases transmitted via close physical con-
tact [13]. On the other hand, the impact of repetitiveness
seems to be negligible in case of conversational contacts
[14]. However, the generality of these findings is limited,
as they are based on a small, unrepresentative sample and
as the specific patterns of such contacts vary depending
on the national and cultural context [15].
Many of existing epidemic models employ differential

equations explicitly or implicitly [12,13], and do not take
into account spatial factors such as variable population
density and population dynamics. This kind of models
incorporates the homogeneous mixing assumption, which
is equivalent to a model in which all individuals in a
population make contact at an identical rate and have
identical probabilities of disease transmission. Although
this assumption is unrealistic, it facilitates the mathemat-
ical analysis and it consistent with several scenarios for
the individual–to–individual transmission. Some authors
have relaxed this assumption, but not eliminated from
their models [13-20].
In the real world, populations are heterogeneous in fea-

tures such as susceptibility, infectiousness, contact rates
or number of partners. Simple homogeneous mixing
models do not allow deviations in host parameters. Het-
erogeneity in susceptibility and infectivity are important
features of many infectious diseases and have been consid-
ered to improve the accuracy of epidemiological models.
The focus has been placed on the impact of heterogeneity
in the final size of epidemics, its consequences on disease
control and data interpretation [13,15,21,22]. It has been
shown that the final size of the epidemic is reduced when
the risk of infection is heterogeneously distributed. There
are models that capture some, but not all, of these fea-
tures [23-29]. A model of an epidemic should incorporate
aspects like: i) individuals had contact with only a finite
number of other individuals, ii) contacts that can result
in disease transmission are usually short and repeated
events, iii) the number and frequency of contacts between
individuals is not uniform, iv) the numbers and identities
of an individual’s contacts will change as time goes by and

v) the individuals have different potential for transmiting
a pathogen than its susceptibility to it.
Cellular automata models can fill these aspects and have

been used by several researchers as an alternative method
to model and simulate epidemies. A cellular automata is
formed by i) a n–dimensional array of identical objects
called cells, which are endowed with a state that changes
in discrete steps of time according to specific rules, and
ii) an updated function determines how cells interact with
their neighbours, influencing the global behavior of the
system [30-33]. In the current literature there are many
implementations of epidemic models based on celullar
automaton [13,31,34-37]. The ways of approaching the
modeling are diverse and can be grouped into differ-
ent categories according to the relevant features of the
model (continuous or discrete space, time or individuals,
among others). There are many works in which each cell
is considered as a homogeneous distribution of individu-
als or represent areas of equal size containing a specific
population [37,38]. Different cells have different densi-
ties and possibly different mobility properties. Infection
occurs through contact between individuals of the same
cell or neighboring cells. Differential equations are explic-
itly included in cells and the temporal evolution of the
epidemic in each cell follows the classical model, with the
modifications that arise from the passage of individuals
from a particular cell to another. However, taking all the
automata as a whole, the temporal evolution of the epi-
demic is similar to the classical model. Many models use
deterministic rules for updating the cells, although proba-
bilistic rules seem to reflect a more realistic behaviour.
In order to address these issues, we introduced an

individual–based–model built upon cellular automata
that include all the features described in previous para-
graphs. This model allows us to capture the individual
heterogeneity as well as a realistic model of individual
contacts, modeling individuals explicitly exposed. Each
individual is characterized by its own infectivity, sucep-
tibility, contact rate, duration of the contacts and social
networks, which defines an individual intrinsic reproduc-
tive number Ri i = 1, 2, . . . ,N . In this paper firstly we
will describe how the proposed model was implemented,
and then it is employed to characterize the influenza pan-
demic of 1918 in Geneva [12]. Finally, using the model
developed for the influenza pandemic different mitiga-
tion strategies were implemented and analyzed for some
possible scenarios.

Methods
Our model is based on a cellular automata and its param-
eters were established using the information collected
about influenza pandemic in the Swiss canton of Geneva
in the early twentieth century and modelled before by
other authors [12,39]. The programming environment
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employed to implement and evaluate the model was
MATLAB, because it has several advantages over other
programming environments: i) built–in mathematical and
manipulation operations on multi–dimensional arrays,
ii) user friendly graphical interactive tools, and iii) a set of
toolboxes that provide specialized optimization and par-
allel computation functions. Additional file 1 provides the
scripts made in MATLAB of the model, and Additional
file 2 provides a help file for a correct use of the scipts (see
Additional files section).
The main features of the proposed model are:

• Each cell represents an individual in one of the
possible states, or the state of empty cell. No
distinction is made between the state of the deceased
and the empty cell. Births involve passing from empty
cell to a susceptible state.

• The transition between states is probabilistic.
• The initial spacial distribution is random, provided

the assumption of homogeneous distribution for
large population sizes and thus validate the classic
approach. However, user–defined spatial
distributions can be also employed.

• The movement of individuals is modeled through a
reciprocal change in state neighbouring cells. At first
random motion was employed since it emulates the
movement that contributes to a homogeneous spatial
distribution and contacts between infectious and
susceptible individuals (homogeneous mixing
assumption). However, user–defined pattern
movements can be incorporated to the model.

• Potentially infectious contact is made between
infectious individuals and susceptible within the
neighbourhood defined as a zone of influence.

• For simplicity, the grid type used is rectangular, with
Moore neighbourhood and variable size. However, an
user–defined grid can be employed to model more
complex situations.

• The boundary condition is fixed, with a contour
consisting of non interacting empty cells, compatible
with the situation in a city, an area of high population
density surrounded by a lower density area.

• The simulation progresses in discrete time t given by
t = ndt, with n ∈ R.

Each cell is then defined as a stochastic Moore machine
A = (X,U ,Y , d) [40] where:

• X is the set states that comprises six possible
conditions: S (susceptible), E (exposed), I
(infectious), A (Asymptomatic), R (Recovered) and D
(Dead or empty).

• U is the set of input. An automaton receives input
only when X = S, issued by another with X = I or
X = A. When the automaton is in the vicinity of the

issuer. Transitions that do not involve contact with
infectious individuals are made in probabilistic form
independently of a possible entry (transitions to an
empty entry e).

• Y is the output set of U issued in state I or A,
corresponding to the input received in state S. The
output corresponds to the infection probability from
contact that has the automata in stage I or A, obtained
from distributing the b value for that automaton in
the neighbourhood under consideration.

• d is the state transition function, which applied to the
active state at iteration k, the state decides
probabilistically active at iteration k+ 1. The function
is applied to each cell in two steps: i ) the state change
and recovery from infection and ii ) the movement.

• For each element of the matrix the probability of
moving from state i to j in each time step, and
placing the states S,E, I,A and D in increasing order
from row or column 1 to 6, is defined the transition
matrix for empty entry (see Table 1).

The main parameters that define the dynamics of dis-
ease in the model become from a classical SEIRmodel and
they are: β is the infection probability for an individual
who is in a susceptible state and comes from the infection
rate of the classical model, μ represents the probability of
death, ε is the probability of effective contact, determines
the rate of infection of individuals, ρ determines the rate
of passage of from exposed state to infected state, γ1 is the
chance of recovery of infected individuals, q: probability
of infection from individuals with no symptoms (Asymp-
tomatic), η is the birth rate, λ is the value of the output
function of the automaton, Ne: initial number of latent
individuals, and Ni: initial number of infected individuals.
Defining the size of the neighbourhood as n and the input
value as 1, the transition between the diferent states of an
individul is given by the contact transition matrix given in
Table 2.
The individuals movement is equally likely from a cell

centred in an area of predefined size to any other within
in this area. The cells swapped positions, which can be
interpreted as changes of state. The output function gives
the value of infection rate if the automaton is in state I

Table 1 Transitionmatrix for empty entry

S E I A R D

S 1 − μ β 0 0 0 μ

E 0 1 − (ε + μ) ερ ε(1 − ρ) 0 μ

I 0 0 0 0 γ1 μ

A 0 0 0 0 γ1 μ

R 0 0 0 0 1 − μ μ

D μ 0 0 0 0 1 − μ
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Table 2 Contact transitionmatrix

S E

S 1 − (λ/η) λ/η

E 0 1

or A. The initial state vector (P (0)) is composed by the
probabilities for each initial state given for the automa-
ton, defined as the total number of cells in the grid and as
P (0) = [Si/G,Ei/G, Ii/G,Ai/G,Ri/G,Di/G].
Now, the cellular automata is defined by R = G (T ,C)

where:

• The topology T is square. The neighborhood is kind
Moore, and is only seen for cells in stage I or A. The
boundary conditions are fixed, with a outline
consisting of empty and no interacting cells.

• The connection C is unidirectional from cells in state
I or A to the cells in a state S that are in the
neighbourhood. It provides an entry for each cell in S
and it is comprised by the value of cells in state I or
A. This value is used to make the transition to state E.
The cells in a state S, which are included in several
neighbourhoods in a given time step k, will have
many chances of changing the state as the number of
neighbourhoods in which they are included.

We can see all the illness process; first, during infection, if
the individual is in infectious state I checks the availability
of susceptible neighbours with whom to contact. If there is
indeed one in the neighbourhood and the likelihood of the
event of infection occurs is fulfilled, then the neighbour
state changes to stationary or latency E. For individuals in
asymptomatic state (status = A) the behaviour is exactly
the same changing the infection probability (status = I)
(Algorithm 2).
The transition from exposed to infectious behaviour is

summarized in Algorithm 3. The transition from one state
to another is fixed upon check two probabilities: i) the
probability of transition to infectious state (status = I)
and ii) the probability of transition to asymptomatic state
(status = A). Given that a cell is currently in exposed
state (status = E), the algorithm checks the probability
of becoming infected. In case of the probability veri-
fies the infectious state the individual becomes infected
(status = I), otherwise the algorithm checks the probabil-
ity of becoming asymptomatic. Like in the previous case,
if the probability verifies the infectious state the individual
becomes asymptomatic (status = A). An infected indi-
vidual can be reported (status = J) or not (status = I)
(Algorithm 4). During the recovery phase, if the individ-
ual is in infectious state (Status = I) or asymptomatic
state (Status = A) and satisfies the likelihood of recov-
ery, the individual passes to recovered state (Status = R)

(Algorithm 5). In death by illness, for infectious individu-
als that satisfies the probability of death, then goes to dead
state (state = D) or empty.
Death by disease is probabilistic, where this probability

was adjusted according to the epidemic data. If an individ-
ual meets the probability of death by disease is removed,
leaving an empty cell in the grid (Algorithm 5). In the case
of natural deaths, if the current cell is not empty and sat-
isfies the probability of natural death, then goes to dead
or empty state (State = D), if the cell is in empty, and
holds the probability of birth, then it switches to suscep-
tible state (Status = S). The odds of births and natural
deaths are equal, so this process does not affect in the first
instance the size of the population (Algorithm 6).
Finally, in the movement phase two cells exchange their

values. Firstly, a perturbation for each individual is com-
puted to determine the direction of the movements. Then,
the curent state of each cell (corresponding to each indi-
vidual) is stored in auxiliary variables, which is transfered
to the new cell occupied by the individual. This process
is repeated with each individual of the population and an
individual can move more than once in the same cycle
(Algorithm 7).

Algorithm 1 Cellular automata dynamics
Grid{NxN square grid where the automata evolve}
Nt = TotalIndividuals
N = TotalDays
for Day = 1 → N do

for i = 1 → Nt do
{Infection, Algorithm 2}
{Exposed to Infectious, Algorithm 3}
{Reported, Algorithm 4}
{Recovery, Algorithm 5}
{Dead by illness, Algorithm 6}
{Births and natural deaths, Algorithm 7}
{Individuals movement, Algorithm 8}

end for
end for

The algorithm that simulates the dynamic of the epi-
demic is summarized in Algorithm 1, and each step is
described in Appendix A. Some of its advantages are:

• Allows us to control the degree of heterogeneity of
the model by defining each individual as a cell within
the grid with its own parameters.

• Allows us to model different spatial distributions,
resembling the grid topology to that of a real city.

• Directed movement can be implemented to generate
different topologies of connection network, which
allows to evaluate how the spatial distribution affects
the spatio–temporal evolution of the desease.
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• Preventive measures can be easily modelled to assess
their effects on the evolution of the disease.

• The relaxation of the assumptions of the classical
model allows us to study their impact on the
spatio–temporal evolution of the desease.

For the model parameters adjustment (see Table 3)
we must consider several issues that arises due to the
approach. First, there is the problem of scale to be used,
the larger the grid and population employed, the closer
we get to the large population assumption of the classical
model and the computational cost increases. Therefore,
it is non desirable to use grid sizes to big for temporal
behaviour analysis of the epidemic, however it is used in
this paper for the purpose of validating the model with
parameters of the classical model. The size of the neigh-
bourhood, determines the degree of global influence. The
larger the neighbourhood size used, the closer the results
to the assumption of spatial homogeneity of classical
model. This is because a very large neighbourhood can
influence the infectious even in low density areas of infec-
tious ,softening the temporal dynamics. Finally, the infec-
tiveness of each individual was modeled using a normal
probability distribution which contributes with the popu-
lation heterogeneity for infective individuals, resulting in
a grid full of different types of spreaders differentiable in
two populations, one being more active than the others.
To test the capabilities of the proposed model, a com-

parison with the classical model obtained by Chowell
et al. [12] was performed. Firstly, the parameters of
the individual–based–model were adjusted by minizing
the mean square error between the output predicted
by the model and the epidemic data, like in [12]. The
model was adjusted to the first wave of the epidemic and
the resulting parameters are shown in Table 3. Figure 1
shows the time evolution of infected populations obtained
with the proposed model and the classical model [12].
Although, both model have similar mean square error
(0.07 for the classical model and 0.068 for the proposed
model) the proposed model is able to better approximate
the real dynamics of the epidemic because its spatio–
temporal modeling capabilities and its multiagent nature.

Results and discussion
The proposed model allows us to establish and evaluate
different scenarios to assess the dynamics of an epidemic
and thus determine how each factor influences the pop-
ulation dynamics. To evaluate the model under realistic

Table 3 Model parameters

Parameters

β ρ γ1 q Ne Ni

8.32 0.082 0.418 0 365 186

conditions, simulations were performed with real popu-
lation size (N = 75.000) and a neighbourhood around
the grid size, using the parameters obtained for the classi-
cal model (Table 3). The initial distribution of individuals
is kept uniform over the entire domain. The heterogen-
ity of the infection rate was characterized using a normal
distribution of suceptibility and infectivity of individu-
als. Finally, asymptomatic individuals were included in the
population, they have a very low infective rate but influ-
ence the dynamics of the epidemic as they represent a
significant portion of the infected population.
Another assumption made in population models is the

spatial homogeneity. However, in the case of an epidemic
began in one or a few bounded regions, homogeneity
could not be achieved instantly if we assume random
movement. Varying the initial spatial distribution of infec-
tious individuals, the behaviour of the epidemic break
away from the behaviour resulting from classical mod-
els (see Figure 2). In the first case we consider infec-
tious individuals initially distributed in one half of the
grid.The evolution of the infected population shows a sim-
ilar behaviour to the classical model but it reaches a lower
peak value and a higher stationary number of infected
individuals. This phenomenon is caused by the confine-
ment of infectious individual to a smaller area that leads
to higher frequency infectious encounters with sucepti-
ble individual than expected in homogeneous conditions
until the suceptible population is depleted. Then, a high
number of suceptible individuals are found when infected
individuals move through the grid. In the second case,
infectious individuals initially occupy one quarter of the
grid. In this case, the evolution of the infected population
deviates from the behaviour of the classical model. The
number of infected remains at a low but persistent num-
ber through the time. This behaviour is the result of the
small number of susceptible individuals available in the
neighbourhood at all time, which leads to a small repro-
ductive number. However, the infected individuals are
able of finding new susceptible as they move through the
grid. Finally, infectious individuals only occupy one eighth
of the grid. In this case, the evolution of the infected popu-
lation follows a similar behaviour to the previous case. The
results of these simulations are shown in Figure 2. Simula-
tions for the third case but with directed movement (from
one corner to the rest of the grid) show a partial recovery
of the expected behaviour but delayed several days.
Now, let us consider a scenario that emulates a real city

with a populated urban center surrounded by a peripheral
area of lower population density. In this case we analyze
the effect of spatial distribution of population through
the urban area, considering two spatial distributions:
i) random concentration and ii) uniform concentration
(see Figure 3). The evolution of populations for both sit-
uations shown similar behaviour, however for the case
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Figure 1 Epidemic evolution for a large and completely homogeneous population. In figure we can see in blue real data; black line
corresponds to automata model result and red to ODE based model.

of homogeneous distribution exhibits a pick in the num-
ber of infected individual around day 20 that is greater
compared with the other case dynamics but in contrast
on the other hand shows a response that is more per-
durable in time. In the case of the concentrated population
population (i.e urban center) the number of infected peo-
ple is similar but smaller than the first case, this may
be due to the fact that soon infected individuals keep

surrounded by recovered individuals stopping the illness
process earlier. Both situations shows similar dynamics,
in the first case, the number of initial contacts is greater
due to the nature of the distribution throwing a longer
epidemic.
A strategy typically used to control an epidemic is

vaccination. To assess their effect on the temporal
dynamics different populations proposed initial immune
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Figure 2 Effect of initial spatial distributions for infected individuals.
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Figure 3 Dynamics for high concentration spatial distribution and uniform concentration spatial distribution and low density.

individuals. The effect of vaccination plan for an urban
population with high density is a drastic decrease in the
number of new cases because the initial susceptible pop-
ulation level is considerably lower (Figure 4). In this way,
the infected individuals on average have less contact with
susceptible, reducing the reproductive number for each
generation.

Finally the last scenario considered in this work is
a quarantine.This strategy is usually analysed in other
works, is expected to limit the movement of people after a
certain period affect disease dynamics. In our model, pop-
ulation stops moving after the number of infected indi-
viduals reaches or exceeds a certain threshold (1%, 3%, 5%
of population infected). The results of these simulations
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Figure 4 Vaccination effect in disease dynamics for diffrerent vacinnated population size.
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are shown in Figure 5. Reducing the mobility of individ-
uals seems to work much better when you have highly
dense populations like populated urban centres, since
in lower dense population the quarantine is implicitly
located.
The individual–based–model proposed in this work

allows to assimilate into the model features (like indi-
vidual heterogenity, social behaviour, spatial distribution
and geographical features) that improve its accuracy and

modeling capabilities. These facts result in more realistic
and accurate system representation, as well as a flexibil-
ity to define the computational model. The price paid
to achieve these advantages is the increment of compu-
tational resources required to run the model, compared
with the classical model. However, this problem is not
significant nowadays due to the reducing cost of comput-
ers. It is also important to highlight some drawbacks of
the programming enviroment employed to implement the
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model. MATLAB significantly simplify the implementa-
tionmathematical, manipulation and graphical operations
required by the model. However, it uses a large amount
of computational resources (memory and processor time)
that results in large computational times that limit the
size of the problem addressed. This drawback can be
addressed using a more efficient programming enviro-
ment (like Phyton or C++), but this is not the objective of
this work.

Conclusions
The development of an individual–based–model based
on cellular automata provide a powerfull tool to imple-
ment computational models that include the relevant
features of the epidemic process. The improvement
in the modeling capabilities, by including individual
characteristics (heterogeneity, spacial distribution and
social behaviour) and geographical features, more real-
istic and accurate dynamic behaviors can be achieved,
which translates into better analysis of the system under
study.
Finally, it can be noted that the importance of this type

of modelling lies in the fact that it allows to analize a com-
plex system (like an epidemic situation) as the interaction
of a collection of simpler subsystems, each of one con-
tributes to overall system behaviour. Heterogeneity and
spatial structure are relevant properties of such complex
systems whose role in the emergent behaviour is neces-
sary to understand. This model is a step forward in this
direction since it allows to control all the relevant fea-
tures identified through this work (individual heterogen-
ity, spatial distribution, social behavior and geographical
features) and even more.

Appendix A. Algorithms

Infectious state algorithm

Algorithm 2 Infectious state
if State = I then

if Neighbor = S then
Z ∼ U[0, 1]
if Z < β/ν then

State = E
end if

end if
else

if State = A then
Z ∼ U[0, 1]
if Z < qβ/ν then

State = E
end if

end if
end if

Exposed state algorithm

Algorithm 3 Exposed state
if State = E then

Z ∼ U[0, 1]
if Z < εr then

State = I
if Z < r then

State = A
end if

end if
end if

Reported step algorithm

Algorithm 4 Reported step
if State = I then

Z ∼ U[0, 1]
if Z < α then

Estado = J
end if

end if

Recovery step state algorithm

Algorithm 5 Recovery step
if State = I o State = A then

Z ∼ U[0, 1]
if Z < γ 1 then

State = R
end if

end if
if State = J then

Z ∼ U[0, 1]
if Z < γ2 then

State = R
end if

end if

Dead by illnes algorithm

Algorithm 6 Dead by illness
if State = I o State = J then

Z ∼ U[0, 1]
if Z < δ then

State = D
end if

end if
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Birth and natural deaths algorithm

Algorithm 7 Births and natural deaths
if State �= D then

Z1 ∼ U[0, 1]
Z2 ∼ U[0, 1]
if Z1 < μ then

State = D
end if
if Z2 < μ then

State = S
end if

end if

Individuals movment algorithm

Algorithm 8 Individuals movment
Z1,Z2 ∼ U[−r, r]
Aux = State(i, j)
State(i, j) = State(i + Z1, j + Z2)
State(i + Z1, j + Z2) = Aux

Additional files

Additional file 1: Supplementary MATLAB scripts (m files)
corresponding to the algorithms.

Additional file 2: Explains how to use the model, in case you want to
replicate experiments.
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