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Background: The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14-21.5 kDa in
size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation
of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform
of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and
multi-functional, having interactions with numerous proteins such as Ca**-calmodulin, and with actin, tubulin, and
proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in
primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP.

Results: To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms
are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1
(ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP
and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin
are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles.
The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association.

Conclusions: These results provide more direct evidence for association of the predominant 18.5-kDa MBP
isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization
observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during
membrane and cytoskeletal extension and remodeling in OLGs.
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Background

Mpyelin basic protein (MBP, specifically the classic
membrane-targeted 18.5-kDa isoform) is responsible for
adhesion of the cytoplasmic surfaces of the multilayered
myelin sheath [1,2], and may form a molecular sieve
restricting many oligodendroglial proteins from access
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to compact myelin [3-6]. It is an intrinsically-disordered
protein that acquires local elements of ordered struc-
ture on binding to lipids or to other proteins [7-15].
Like other intrinsically-disordered proteins, it binds to
many other proteins in vitro, both through electrostatic
interactions and through a PXRP SH3-ligand domain
[15,16]. Those protein-protein interactions that have
been studied in detail include actin, tubulin, Ca®*-calmodu-
lin, and the SH3-domain proteins Fyn-kinase, ZO-1, and
cortactin [10,11,15-23]. Furthermore, MBP can polymerize
and bundle actin filaments and microtubules, cross-link
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them to each other, and tether them and SH3-domain
proteins (as demonstrated for the SH3-domain of
Fyn-kinase) to a lipid surface [24-26]. These varied inter-
actions may allow MBP to participate as a signaling hub
in myelin formation and remodeling, and thus to have
many other functions in addition to membrane adhesion
in compact multilamellar myelin [11,16,27]. In vitro,
Ca®*-calmodulin dissociates MBP from these proteins and
from the lipid bilayer, and thus could regulate this signaling
role in vivo [24,28]. Post-translational modifications to
MBP, such as phosphorylation and deimination, which
reduce its net positive charge, and increased membrane
surface charge due to increased amounts of negatively-
charged lipids, can also regulate these interactions, and
may be important modulators of myelin assembly and
turnover [14,17,25,29-33].

These diverse associations with MBP have been char-
acterized extensively using purified proteins and lipid
vesicles in vitro. Concomitantly, co-localization of MBP
and cytoskeletal and SH3-domain proteins has been de-
tected in primary oligodendrocytes [17,25,34-38], and
between fluorescent proteins transfected into N19 oligo-
dendroglial cells (N19-OLGs) [27,32,39]. Treatments of
cell cultures with PMA (phorbol-12-myristate-13-acet-
ate) or IGF-1 (insulin-like growth factor-1), demonstrated
this co-localization more clearly in plasma membrane re-
gions in which cytoskeletal formation was induced, sup-
porting the conclusion that the co-localization is specific
and has a physiological role [39]. Classic MBP has also
been shown to be important for formation of the cytoskel-
eton and for stabilizing microtubules in the cold in pri-
mary OLGs [40-43]. Beyond such cell-culture systems,
MBP has also been co-immunoprecipitated with microtu-
bules from brain tissue [44], and it has been shown by
proteomics analysis to be one of many MAPs (micro-
tubule-associated proteins) associated with microtubules
from brain [45]. Pull-down assays have also revealed a po-
tential interaction of MBP with B-tubulin and the cyto-
plasmic loop of the gap junction protein connexin-43 [46].

In this present study, we show first that immunoprecipi-
tation of MBP from primary OLG cell lysates also pulls
down cytoskeletal and SH3-domain proteins. Second, we
provide further evidence for rapid interaction of MBP with
actin filaments formed at certain sites in N19-OLGs after
cell recovery from cytochalasin D (CytD) treatment, which
directly affects the actin cytoskeleton. These combined re-
sults provide more and direct confirmation for specific as-
sociation of MBP with these proteins in primary OLGs,
and in live cells, than previously detected from microscop-
ical co-localization observations. The rapid redistribution
or enrichment of MBP at sites of newly formed actin fila-
ments shows that this association is dynamic, and provides
further confirmation that this protein plays a physiological
role in cytoskeletal remodeling in oligodendroglial cells.
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Methods

Materials

Mouse monoclonal anti-actin antibody (Clone ACTNO5,
IgG1), and mouse monoclonal anti-Fyn antibody (p59fyn,
clone 1S, IgG1), were purchased from ThermoScientific/
LabVision (Fremont, CA); rabbit polyclonal anti-MBP anti-
body (E13), IgG fraction, was a gift from Dr. E. Day [47]);
mouse monoclonal anti-MBP (clone SMI-99), purified
IgG2b, was from Covance (Emeryville, CA); mouse
monoclonal anti-axotrophin (B2), purified IgG2, and rat
monoclonal anti-ZO-1 antibody (R40.76), I1gG2a, were
from Santa Cruz Biotechnology (Santa Cruz, CA); rabbit
polyclonal anti-a/B-tubulin antibody and rabbit poly-
clonal anti-cortactin antibody were purchased from Cell
Signaling Technology (Beverly, MA); and goat anti-
rabbit IgG conjugated to HRP (horseradish peroxidase)
was purchased from Jackson ImmunoResearch Labs (West
Grove, PA). The enhanced chemiluminescence ECL™
Western Blotting reagents were from GE Health Care
(Buckinghamshire, UK).

The cross-linking reagent, bis(sulfosuccinimidyl) suberate
(BS®) was from ThermoScientific (Rockford, IL). Protein
G-conjugated Dynabeads were from Life Technologies
(Carlsbad, CA). The CytD solution in DMSO and Triton
X-100 (SigmaUltra; t-octylphenoxypolyethoxyethanol;
TX-100) were purchased from Sigma-Aldrich (St. Louis,
MO). The detergent Nonidet® P-40 (Lot 110 F-39211;
octylphenoxypolyethoxyethanol) was purchased from
Sigma Chemical some time ago, when it was available,
and is said to be identical to Igepal, which is still avail-
able from Sigma-Aldrich. Both TX-100 and Nonidet®
P-40 (NP-40) are from the family octylphenol poly(ethy-
leneglycolether),,, where n is 9.6 for TX-100 and 9.0 for
NP-40 [48]. Sodium deoxycholate (99% purity; DOC)
was purchased from Bioshop Canada (Burlington,
ON). Rhodamine-phalloidin was from Molecular Probes
(Eugene, OR).

Oligodendrocyte culture and cell lysis

Spinal cord oligodendrocytes from Wistar rat 8 day old
pups (Charles River Canada, St. Constant, QC) were cul-
tured for 7 days as described previously [49]. They were
plated at a cell density of 10°/cm? in four-well plates. Four
plates of cells were used for each experiment. Culture
conditions were identical for all experiments in order to
achieve a similar degree of OLG maturation state, with
large membrane sheets, and degree of contamination
(about 10%) by other cells such as astrocytes. Lysis buf-
fer was 10 mM HEPES-KOH containing 50 mM KCl,
1 mM MgCl,, 2 mM EGTA, 2 M glycerol, and 1% TX-
100 and 1 mM protease inhibitors (adapted from [37]).
Other detergents, 1% NP-40 and 1% sodium deoxycho-
late (DOC), were added for some experiments, as indi-
cated in the text, to increase the stringency of extraction.
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The cells were detached and lysed by adding 250 pL of
lysis buffer to one plate at room temperature. In order to
concentrate and remove as much cell protein as possible,
the plate was scraped for 3 min and the suspension trans-
ferred to the 2™ plate, which was scraped similarly, and
the suspension transferred to the 3" and 4™ plates in turn,
and then to a test tube. This step was repeated with an-
other 250 pL of lysis buffer three times. The total volume
of 1 mL of suspension from the 4 plates was pooled in one
test tube. The sample was incubated for 30 min at room
temperature with gentle vortexing every 10 min to
complete lysis. Two 5-uL aliquots were removed for pro-
tein assay and the sample was frozen overnight. The pro-
tein concentration of the pooled material ranged from
2-5 mg protein/mL for different experiments.

Immunoprecipitation
A flowchart providing an overview of the extraction, im-
munoprecipitation, and western blotting process is pro-
vided in Additional file 1: Figure S1. Lysed cell samples
were thawed and centrifuged at 14,000 g for 10 min, the
supernatant was removed, and the pellet was resus-
pended in 1 mL lysis buffer. Aliquots of both the super-
natant and resuspended pellet were removed for protein
analysis, and both pellet and supernatant were pre-
cleared with 150 puL Dynabeads Protein G by rotation
for 10 min at room temperature. Each pre-cleared sam-
ple (450 pL) was used for immunoprecipitation with
monoclonal anti-MBP SMI 99-conjugated or with con-
trol (anti-axotrophin) antibody-conjugated Dynabeads.
To reduce the amount of antibody heavy chain and light
chain in the immunoprecipitated sample, the monoclonal
anti-MBP SMI 99 or control (anti-axotrophin) antibodies
were cross-linked to Dynabeads Protein G at a ratio of
25 pg IgG per 150 puL Dynabeads Protein G (4.5 mg) in
800 pL conjugation buffer containing 20 mM sodium
phosphate, 150 mM NaCl, at pH 7.4. The beads were ro-
tated for 20 min at room temperature, removed, and
washed with 800 pL phosphate-buffered saline (PBS) con-
taining 0.02% Tween 20, and then with 800 uL conjuga-
tion buffer. Then 1 mL of 5 mM BS? was added, and the
beads were rotated for 30 min at room temperature.
Quenching buffer (50 pL, 1 mM Tris—HCI, pH 7.5) was
added and the beads were rotated for 15 min. The beads
were removed and washed twice with 800 pL lysis buffer.
The pre-cleared lysate pellet and supernatant, both in
the original lysis buffer, were added to antibody-conjugated
beads and rotated for 2 hours at 4°C. The beads were re-
moved and washed 6 times with 1 mL lysis buffer by rota-
tion for 5 min. The beads were then extracted to remove
bound proteins with 2X NuPage sample buffer (with 4 M
urea and 20 mM NaF added) plus an equal volume of
distilled water, by boiling for 10 min. The supernatant was
removed from the beads, DTT added to it to a final
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concentration of 5 mM, and the sample boiled again for
10 min. For analysis of MBP, actin, tubulin, and Fyn,
aliquots were run on NuPage 4-12% Bis-Tris gels (Life
Technologies, Carlsbad, CA) in MES-SDS running buffer.
For analysis of ZO-1 and cortactin, NuPAGE 4-12%
Bis-Tris gels were used with MOPS-SDS running buffer.

A control antibody was always used in every immuno-
precipitation experiment to determine specificity. Signifi-
cant amounts of proteins of interest were also precipitated
by the control antibody-bound beads, probably due to the
presence of large agglomerates which may have been
membrane-bound. Therefore, the immunoprecipitation ex-
periments were repeated several times with freshly pre-
pared antibody-bound beads for each experiment. Other
proteins were concluded to be co-immunoprecipitated
with MBP if the anti-MBP-bound beads reproducibly pre-
cipitated more of the protein of interest than the control
antibody-bound beads.

Western blotting

Total protein was assayed by the BioRad microassay using
Dye Reagent Concentrate from BioRad (Hercules, CA).
Proteins were transferred from gels to nitrocellulose mem-
branes using NUPAGE Transfer buffer. The blots were
blocked with 5% non-fat skim milk in TBS/0.1% Tween-
20. Primary and secondary antibodies were added in the
buffer used for blocking the blots. Since antibody light
chain and heavy chain had M, values close to those of
many of the OLG proteins of interest, the following steps
were taken to ensure that bands observed on western blots
were not light chain or heavy chain: (i) cross-linking of
antibody to the Dynabeads Protein G; (ii) use of different
animal species of antibody for western blot than the
mouse antibodies used for immunoprecipitation, where
possible; (iii) use of animal species-specific 2™ antibodies;
and (iv) inclusion of the antibodies used for immunopre-
cipitation on the same gel with OLG samples, in order to
determine the location of light chain and heavy chain on
the blot. This strategy was used for all gels. Control immu-
noprecipitates were run on the same gel and used for the
same blot as the anti-MBP immunoprecipitate, and band
densities were only compared when from the same blot
and same exposure time. Western blot procedures were
identical for all experiments.

Plasmid construction

We constructed plasmids coding for RFP-tagged versions
of classic 18.5-kDa MBP possessing a 3'UTR (untrans-
lated region) namely, pERFP-C1-rmMBPC1-UTR, as pre-
viously described [50] (n.b., the “C1” of the RFP vector
designation is not to be confused with the “C1” charge
component of MBP). The GFP-tagged p-actin was con-
structed using recombinant DNA techniques as described
previously [39].
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Cell line (N19) culture and transfection

Tissue culture reagents were purchased from Gibco/
Invitrogen (Invitrogen Life Technologies, Burlington, ON).
The FuGene HD transfection reagent was purchased from
Roche (Roche Diagnostics, IN). The N19 immortalized
oligodendroglial cell line was grown in high-glucose
Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% FBS (foetal bovine serum) and 1% peni-
cillin/streptomycin, and cultured in 10-cm plates at 34°C/
5% CO,. At 70-80% confluency (4—7 days), the cells were
detached using 0.25% trypsin for 5 min, and were seeded
onto 2-cm plates containing a glass coverslip. Cells were
grown overnight to a confluency of 15% prior to transfec-
tion using 100 uL serum-free media, 0.75-3.0 ug of plas-
mid DNA, and 4 pL of FuGene HD (Roche Diagnostics,
IN). The DNA was allowed to complex for 5 min at room
temperature, and was directly added to cells following in-
cubation. Cells were cultured for an additional 48 hours at
34°C prior to treatment, fixation, or immunoprocessing.

N19 cell culture, transfection, and treatment with CytD,
live-cell imaging and image analysis

The N19-OLGs were seeded on poly-L-lysine coated
coverslips (18-mm diameter, #1.5, Warner Instruments)
at 34°C in 5% CO,, as described previously [39]. One day
(24 hours) after seeding, the cells were co-transfected with
RFP-MBP and GFP-B-actin plasmids respectively. The
CytD solution in DMSO was purchased from Sigma-
Aldrich at a concentration of 9.9 mM (5 mg/mL) and was
diluted in serum-free DMEM (GIBCO) to a final concen-
tration of 2 pM. Two days (48 hours) after transfection,
the cells were washed and incubated with fresh serum-
free DMEM medium for at least 1.5 hours, and were then
treated with 2 uM CytD at 34°C in 5% COs,.

In preliminary experiments, the cells were incubated
with CytD for varying periods of time, from 30 min to
2 hours, and the cells were fixed and stained with
rhodamine-phalloidin [49]. Clumps of actin, rather than
long actin filaments were observed after CytD treatment,
as observed for OLGs after a 4-hour incubation with CytD
[34], and the effect was maximal at 2 hours. The cells were
washed 3 times in fresh serum-free DMEM medium (pre-
warmed to 34°C) and cultured for additional periods of
time up to 2 hours, fixed and stained with rhodamine-
phalloidin. Maximal recovery of staining characteristic of
actin filaments had occurred after incubation for 1 hour.
Therefore, a 2-hour incubation time with CytD, followed
by washing and culture for an additional 1-hour recovery
time, were used for live cells containing RFP-MBP and
GFP-actin. An image of the live cells right after 2-hour
culture with CytD was acquired, and CytD was removed
by quickly washing the cells 3 times in fresh serum-free
DMEM medium (pre-warmed to 34°C). After the last
addition of serum-free DMEM medium, acquisition of
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images was resumed. The N19-OLGs, co-expressing RFP-
MBP and GFP-f-actin, were imaged on an Olympus IX81
inverted fluorescence microscope equipped with a
Hamamatsu C9100-13 back-thinned EM-CCD camera and
a Yokogawa CSU X1 spinning disk confocal scan head. The
cells were irradiated with light from separate diode-
pumped solid state laser lines at 491 and 561 nm, respect-
ively, and viewed at 60X magnification through a 1.35 N.
A. oil-immersion objective. The software used for image
acquisition was the Perkin Elmer Software Volocity
(Version 5.4.2), and images were processed using the
NIH software Image] (Version 1.46 g).

Cells were placed on the microscope stage within 2 hours
of introducing CytD, and were maintained at 34°C on the
microscope stage. This treatment time was chosen as opti-
mal on the basis of control experiments of fixed N19-cells
(both transfected with RFP-MBP and untransfected) and
staining with phalloidin [51,52]. They were imaged initially
at the end of 2 hours exposure to CytD, and every 20 min
thereafter for an hour following removal of CytD. Correl-
ation analysis was done by comparing the intensity values
due to MBP RFP and B-actin GFP along a line drawn
across a region where changes in their distribution were
observed after removal of CytD from the cell medium.

Results

Immunoprecipitation

Since classic 18.5-kDa MBP is a membrane-associated
protein, immunoprecipitation by anti-MBP antibody may
bring down membranous agglomerates in which other
proteins are present but not directly bound to MBP.
Therefore, several detergent buffers of increasing solubil-
izing ability were used for lysis and immunoprecipitation
of primary OLGs. These contained: (i) 1% TX-100; (ii) 1%
TX-100 plus 1% NP-40; (iii) 1% TX-100 plus 1% NP-40
plus 1% DOC. These agglomerates may also stick non-
specifically to control antibody-bound beads. Therefore,
all immunoprecipitation experiments were repeated sev-
eral times with freshly prepared control antibody and
anti-MBP-bound beads to ensure reproducibility.

Extraction and immunoprecipitation with buffer containing
1% TX-100

It has been shown previously, by microscopy of myelin
and OLGs extracted with 0.5-1% TX-100 in similar
buffers, that structures resembling the myelin radial com-
ponent and the OLG cytoskeleton were preserved and
were in the detergent-insoluble pellet [36,37,53,54]. On the
basis of these early studies, therefore, complexes of MBP
with cytoskeletal and other proteins are expected here to
be in the pellet, in addition to the supernatant in TX-100.
Indeed, immunoprecipitation of the TX-100-insoluble pel-
let with monoclonal anti-MBP (SMI 99) antibody followed
by immunoblotting showed specific enrichment of MBP,
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tubulin, and actin (Figure 1, lane 5) compared to the con-  Additional file 1: Tables S1-S4 for a summary of bands
trol immunoprecipitate (Figure 1, lane 6). These results in-  observed in Figures 1, 2, 3, and 4, respectively, and their
dicate that MBP is associated with tubulin and actin in the identification.
TX-100 insoluble fraction. The immunoprecipitation re- Two different anti-MBP antibodies were used for the
sults for the supernatant could not be interpreted due to  western blot shown in Figure 1. The western blot with
the similarity of results for the anti-MBP SMI 99 and con-  the same mouse anti-MBP SMI 99 antibody used for
trol immunoprecipitates for both MBP and actin (Figure 1,  immunoprecipitation showed two bands for the pellet,
lanes 2,3). No tubulin was detected in the immunoprecipi-  supernatant, and the immunoprecipitated samples at M,
tates of the supernatant. The lack of specificity of the values of approximately 24 and 27 kDa, corresponding
supernatant immunoprecipitate may be due to the pres-  to the 18.5-kDa and 21.5-kDa isoforms of MBP. (Highly-
ence of membranous agglomerates not solubilized by charged and intrinsically-disordered proteins such as
TX-100, which may have bound non-specifically to the =~ MBP always run anomalously on SDS-polyacrylamide
Dynabeads-Protein G or bound antibodies, even though gels [9,55], and the M, values observed were thus as ex-
the samples were pre-cleared first with native Dynabeads-  pected.) The light chain from the pure SMI 99 IgG run
Protein G (see Discussion below). on the gel was not detected, but that from the control
Despite efforts to prevent the contamination of the antibody gave a band with M, of about 28 kDa (Figure 1,
immunoprecipitated samples with mouse IgG light chain  lane 8), slightly above that of the 21.5-kDa MBP isoform.
or heavy chain or their detection on the blots (see Materials However, in the immunoprecipitated samples detected
and Methods), these bands were sometimes detected by by mouse anti-MBP SMI 99 and anti-mouse IgG second
the anti-mouse IgG second antibodies used for some antibody, another band was also present at M, approxi-
mouse primary antibodies. The following analysis indicates  mately 30 kDa, above that of light chain (Figure 1, lanes
that their presence did not prevent detection or assessment  2,3,5,6). This new band could be due to light chain after
of relative amounts of the OLG proteins of interest. See  binding the cross-linking reagent BS®, since it was not
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Figure 1 First level of stringency - extraction with Triton X-100. MBP, tubulin, and actin co-immunoprecipitate from the OLG Triton X-100
insoluble pellet. Primary OLGs were extracted with buffer containing 1% TX-100, and the soluble and resuspended insoluble fractions were
immunoprecipitated in the lysis buffer with monoclonal anti-MBP SMI 99 antibody and a control antibody. Western blots were immunostained
with rabbit polyclonal anti-MBP (E13) antibody, mouse monoclonal anti-MBP antibody (SMI 99), rabbit polyclonal anti-tubulin antibody, and
mouse monoclonal anti-actin antibody. Representative results of 4 experiments are shown. Lane 1, supernatant fraction; lane 2, anti-MBP (SMI 99)
immunoprecipitate of supernatant; lane 3, control antibody immunoprecipitate of supernatant; lane 4, pellet; lane 5, anti-MBP (SMI 99) immunoprecipitate
of pellet; lane 6, control antibody immunoprecipitate of pellet; lane 7, anti-MBP SMI 99 IgG; lane 8, control antibody IgG. Supernatant fraction was not
loaded for the gel used for the actin blot, and the immunoprecipitated supernatant fractions shown in lanes 2 and 3 for the actin blot were from a
different gel than the remaining samples, due to overloading and overexposure of the immunoprecipitated supernatant samples on the gel/blot used
for the remaining samples. Standards for MBP, tubulin, and actin were not loaded on the gels used for these samples, but can be seen in Figure 2a.
The 3 bands for MBP at M, values of approximately 16-27 kDa, indicated by arrows, represent the classic 14-, 18.5-, and 21.5-kDa isoforms of MBP. The
14-kDa isoform was not detected with the monoclonal anti-MBP (SMI 99) antibody but was immunoprecipitated by it, since it was detected by E13
antibody in the anti-MBP (SMI 99) immunoprecipitate (lanes 2,5). Lower-exposure blots show the MBP bands in the immunoprecipitates clearly but did
not show those in the pellet or supernatant as well. Therefore, a more highly-exposed blot was chosen for this figure.
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Figure 2 Second level of stringency - extraction with Triton X-100 and NP40. MBP, tubulin, actin, ZO-1, and Fyn co-immunoprecipitate from
the OLG TX-100 plus NP40-insoluble pellet and supernatant fractions. Primary OLGs were extracted with buffer containing 1% TX-100 plus 1%
NP40, and the supernatant and resuspended pellet were immunoprecipitated with mouse monoclonal antibody anti-MBP SMI 99 and a control
antibody. Western blots were immunostained with (a) rabbit polyclonal anti-MBP (E13), rabbit polyclonal anti-tubulin, mouse monoclonal
anti-actin, rat monoclonal anti-ZO-1, and (b) mouse monoclonal anti-Fyn. Representative results are shown from 3 experiments for MBP, tubulin,
and actin, and from 2 experiments for ZO-1 and Fyn. (a, b) lane 1, standard purified protein sample (18.5-kDa isoform for MBP), except for ZO-1
and Fyn (the tubulin sample was run on the same gel as the other lanes, but separated from them by a M, marker lane and, therefore, was cut
out and shown separately to preserve lane alignment); lane 2, supernatant fraction; lane 3, anti-MBP (SMI 99) immunoprecipitate of supernatant;
lane 4, control antibody immunoprecipitate of supernatant; lane 5, pellet; lane 6, anti-MBP (SMI 99) immunoprecipitate of pellet; lane 7, control
antibody immunoprecipitate of pellet; lane 8, anti-MBP SMI 99 IgG; lane 9, control antibody IgG. Arrows for the MBP blot indicate the 21.5-, 18.5-,
17-, and 14-kDa isoforms of MBP. Lower-exposure blots showed the MBP bands in the immunoprecipitates clearly, but less well for the pellet or
supernatant. Therefore, a more highly-exposed blot was chosen for this figure. The M, of ZO-1 is about 220 kDa, but this antibody also detects
several unidentified bands down to 110 kDa in rat liver, according to the manufacturer. (b) Fyn was detected in the pellet and supernatant at M,
of about 60 kDa (lanes 2,5).

J

present in the supernatant or pellet fractions (Figure 1,
lanes 1,4) or in the non-cross-linked antibody samples

p (Figure 1, lanes 7,8).
Use of a polyclonal rabbit anti-MBP antibody (E13) to
detect MBP showed 3 MBP bands at about M, 16, 24,

1/2/3/4 5|,6|7,8/9]|10

C: i . =
i - and 27 kDa, corresponding to 14-, 18.5-, and 21.5-kDa
& & 2L & & qp" & MBP isoforms in all samples [37] (Additional file 1:
’d" qﬁ" ‘,,-" f” Table S1). Longer exposure was necessary to detect them

in the pellet (not shown). The middle band, identified as
18.5-kDa MBP, migrated similarly to 18.5-kDa MBP iso-

Figure 3 Second level of stringency - extraction with Triton X-100 . . . A
g geney lated from bovine brain (as shown in Figure 2a, for com-

and NP40 - cortactin blot. MBP and cortactin co-immunoprecipitate

from the OLG Triton X-100 plus NP40-insoluble pellet and supernatant parison). No IgG bands were detected by the anti-rabbit
fractions. Lane 1, supernatant fraction; lane 2, blank; lane 3, pellet; lane second antibody used with the rabbit E13 antibody blot
4, anti-MBP (SMI 99) immunoprecipitate of supernatant; lane 5, control for the pure mouse anti-MBP SMI 99 IgG or control

antibody immunoprecipitate of supernatant; lane 6, blank; lane 7,
anti-MBP (SMI 99) immunoprecipitate of pellet; lane 8, control
antibody immunoprecipitate of pellet; lane 9, anti-MBP SMI 99 IgG;

IgG applied to the gel (Figure 1, lanes 7, 8), but a faint
band with M, slightly above that for 21.5-kDa MBP was

lane 10, control antibody IgG. The supernatant and pellet fractions detected in the immunoprecipitated samples, similar
were run on a different gel from the immunoprecipitated samples. to that detected on the mouse SMI 99 anti-MBP blot.
The blots were stained with rabbit polyclonal anti-cortactin However, the presence of 18.5-kDa and 14-kDa MBP on
antibody. Two bands at about 78 kDa and 82 kDa were detected the anti-MBP E13 blot confirmed the presence of MBP

for cortactin. Representative results are shown from 2 experiments.

in the immunoprecipitated sample. The anti-MBP SMI
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Figure 4 Third level of stringency - extraction with Triton X-100 and NP40 and DOC. MBP, tubulin, actin, and ZO-1 do not co-immunoprecipitate
in 1% TX-100 plus 1% NP40 plus 1% DOC; addition of DOC disrupts the protein complexes. Primary OLGs were extracted with buffer containing
1% TX-100 plus 1% NP40 plus 1% DOC, the soluble and resuspended insoluble fractions were immunoprecipitated with mouse monoclonal
antibody anti-MBP SMI 99 and a control antibody. Western blots were immunostained with rabbit polyclonal anti-MBP (E13), rabbit polyclonal
anti-tubulin, mouse monoclonal anti-actin, and rat monoclonal anti-ZO-1 antibodies. Lane 1, standard purified protein sample (18.5-kDa isoform
for MBP), except for actin and ZO-1; lane 2, supernatant fraction; lane 3, anti-MBP (SMI 99) immunoprecipitate of supernatant; lane 4, control
antibody immunoprecipitate of supernatant; lane 5, pellet; lane 6, anti-MBP (SMI 99) immunoprecipitate of pellet; lane 7, control antibody
immunoprecipitate of pellet; lane 8, anti-MBP SMI 99 IgG; lane 9, control antibody IgG.

antibody (Covance) was raised against a peptide com-
prising residues 131-136 of 18.5-kDa MBP, which is ab-
sent in the 14.0-kDa isoform, and thus this antibody did
not detect this smallest isoform.

Bands due to IgG heavy chain, seen in the actin blot in
lanes 7 and 8 of Figure 1 where pure mouse IgG was
loaded, had an M, about 55 kDa, well above that for actin,
and were not detected in the immunoprecipitated samples
for actin and tubulin in any case. An anti-rabbit IgG was
used for the rabbit anti-tubulin blot, and did not detect
the mouse heavy chain used for immunoprecipitation.

Extraction and immunoprecipitation with buffers containing
1% TX-100 plus 1% NP-40

The complexes that are immunoprecipitated from the
pellet of a TX-100 lysate could be membranous, e.g. lipid-
ordered membrane domains, which have been found to be
complexed to cytoskeletal proteins in TX-100 extracts of
myelin and have low buoyant density on a sucrose density
gradient [56]. Therefore, 1% NP-40 was then added to the
TX-100-containing buffer, for lysis and immunoprecipita-
tion, and the polyclonal rabbit anti-MBP E13 antibody
was used to analyze for MBP (Figure 2a and Additional
file 1: Table S2). In this blot, the 17-kDa isoform of MBP
can also be detected due to higher resolution on the gel
(Figure 2a, lanes 2,5). Several SH3-domain proteins that
have been shown previously to bind to MBP in vitro, or be
co-localized with it in cells, namely Fyn, ZO-1, and

cortactin, were also analyzed [20,32,39]. In 1% TX-100
plus 1% NP-40, the anti-MBP SMI 99 immunoprecipitates
of both the supernatant and the detergent-insoluble pellet
were enriched in MBP, actin, tubulin, Fyn, ZO-1, and
cortactin compared to the control immunoprecipitate
(Figure 2a, b, lanes 3,6 compared to lanes 4,7; Figure 3,
lanes 4,7 compared to lanes 5,8). The heavy chain of the
mouse antibodies (55 kDa) was detected by the anti-
mouse IgG used for the mouse anti-Fyn blot, but it had a
sufficiently lower M, than Fyn (60 kDa) and thus did not
interfere (Figure 2b, lanes 8,9). A band with M, of about
75 kDa, higher than that of Fyn, in the control antibody-
immunoprecipitated fractions (Figure 2b, lanes 4,7) that
was not present in the pure IgG samples or in the super-
natant and pellet fractions, is most likely due to the cross-
linked light chain plus heavy chain. No IgG bands were
detected for pure IgG samples in the ZO-1 (Figure 2b,
lanes 8,9) or cortactin (Figure 3, lanes 9,10) blots or in the
immunoprecipitated samples (Additional file 1: Tables S2
and S3).

Thus, protein complexes containing MBP, actin, tubulin,
Fyn, ZO-1, and cortactin, were specifically precipitated by
anti-MBP antibody from both the pellet and the super-
natant fractions in TX-100 plus NP-40. The observation
of greater binding of other proteins to anti-MBP-bound
beads, compared to control antibody-bound beads, was re-
producible in replicate experiments. The greater precipita-
tion of MBP, actin, and tubulin from the pellet in TX-100
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plus NP40 by anti-MBP, compared to that by the control
antibody, agrees with results obtained for the pellet in TX-
100 alone.

The difference between anti-MBP-precipitated and con-
trol antibody-precipitated protein was even greater for
MBP, actin, and tubulin in the supernatant fraction than
the pellet fraction in TX-100 plus NP40, in contrast to re-
sults for TX-100 alone, indicating that the MBP/actin/
tubulin-containing protein complexes in the supernatant
were better solubilized by the combined detergents, and
thus bound less non-specifically to control antibody or
beads. More of the MBP-containing complexes may also
have transferred from the pellet to the supernatant in the
presence of both detergents, probably due to release from
membranes. Since the MBP complexes are better solubi-
lized by the combined detergents, TX-100 and NP-40, this
result supports the occurrence of direct protein-protein
interactions rather than binding to non-specific membran-
ous agglomerates, although it is possible that other pro-
teins are also required to mediate the interactions. The
proteins were not all enriched to the same extent in the
immunoprecipitated material. Both MBP and ZO-1 were
enriched in the supernatant immunoprecipitate relative to
the other proteins. In Figures 2 and 3, MBP, tubulin,
ZO-1, and Fyn are seen to be enriched in the pellet immu-
noprecipitate relative to actin and cortactin. This observa-
tion suggests that the MBP complexes are heterogeneous,
with some MBP molecules interacting with only some of
the detected proteins, and other MBP molecules interact-
ing with others.

Extraction and immunoprecipitation with TX-100 plus NP-40
plus DOC

However, when 1% DOC was also added to the buffer
containing TX-100 and NP-40, and used for cell lysis and
immunoprecipitation, most of the MBP, actin, tubulin and
ZO-1 were extracted into the supernatant (Figure 4, lane
2 versus lane 5), and little or none of the other proteins
besides MBP was detected in the immunoprecipitated
supernatant or pellet samples (Figure 4, and Additional
file 1: Table S4). A trace of actin was detected in the anti-
MBP immunoprecipitate of the supernatant, but was also
present in the control immunoprecipitate (Figure 4, lanes
3,4). Thus, we conclude that DOC disrupted most of the
protein complexes containing MBP, which had remained
intact in the presence of the milder detergents TX-100
and NP-40.

Co-localization of MBP and actin in N19-OLGs after
recovery from cytochalasin

The conditionally-immortalized N19-OLG cell line closely
resembles an immature OLG, before MBP begins to be
synthesised in large quantities [57,58]. As such, it has rep-
resented an ideal model system to study the trafficking
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and interactions of classic 18.5-kDa and 21.5-kDa MBP
isoforms after transfection [32,39,50,59,60]. The plasmid
encoding all GFP/RFP-fusion MBP variants had a 21-
nucleotide 3"'UTR which was found to be essential to en-
sure that the mRNA encoding the 18.5-kDa isoform was
trafficked to the cell periphery, after which the resultant
protein was incorporated into the plasma membrane, in
contrast to proteins lacking the signal, and in contrast to
control vectors encoding either GFP or RFP alone [32,50].
In these studies, the membrane-association of classic 18.5-
kDa MBP variants was found to be essential for several
phenotypic effects in early developmental N19-OLGs that
did not occur with controls expressing GEP or RFP alone,
specifically:

(i) inhibiting calcium influx by voltage-operated
calcium channels (VOCCs), induced by membrane
depolarization caused by high extracellular [K*] [50];
(ii) interacting with the SH3-domain of Fyn, with
physiological effects such as membrane process
extension [32];

(iii) co-localization with cytoskeletal proteins in
N19-cells co-transfected with fluorescently-tagged
MBP, actin, and tubulin [39].

In this latter study, we observed additionally that this
classic 18.5-kDa MBP isoform co-localized with the SH3-
domain-containing proteins cortactin and ZO-1, when
stimulated with PMA. The focus in these experiments was
on membrane ruffles that were induced by exogenous
PMA, and which contained membrane-associated MBP
variants fused with RFP or GFP. When RFP or GFP were
expressed alone, they did not traffic to the cell periphery.

We have extended the investigations in reference [39] as
follows. Here, N19-OLGs transfected with RFP-MBP and
GFP-B-actin were exposed to 2 uM CytD for 2 hours to
depolymerize the cytoskeleton [51,52], and then allowed
to recover in its absence, in order to examine the redistri-
bution of MBP and actin during repolymerization of the
actin cytoskeleton. Cytochalasin D is a fungal metabolite
that causes reversible depolymerization of actin filaments,
and is widely used to study the role of actin in biological
processes [51,52]. Its depolymerizing effect on actin fila-
ments in cells is reversed on removing it from the medium
in which the cells are incubated.

Figure 5 and Figure 6 show live-cell fluorescence images
of two different N19-OLGs co-transfected with GFP-B-actin
and RFP-MBP after 2 hours exposure to CytD (panels a-c);
20 min after its removal from the cell medium (panels f-h);
40 min after its removal (panels k-m); and 60 min after its
removal (panels p-r). Treatment with CytD for 2 hours
caused depolymerization of actin filaments and formation of
aggregates of GFP-B-actin both in the cell body and in cell
processes (Figure 5a, Figure 6a). The RFP-MBP, on the other
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Figure 5 Live cell images of N19-OLGs treated with CytD for 2 hours, and then allowed to recover in its absence. The N19-OLGs after
incubation with CytD for 2 hours (a-e), after 20 min recovery (f-j), after 40 min recovery (k-o0), and after 60 min recovery (p-t). Panels a, f, k, and
p show GFP-actin signal; panels b, g, I, and g show RFP-MBP signal; panels ¢, h, m, and r show the merge of GFP-actin and MBP-RFP signals;
panels d, i, n, and s correspond to intensity plots along line 1, and panels e, j, 0, and t represent intensity plots along line 2 for GFP-actin (green)
and RFP-MBP (red). The intensity plots are in arbitrary units and do not quantitatively reflect the MBP and actin enrichment at the sites analyzed,
but show changes in relative intensity of MBP and actin, their location and their degree of co-localization with time. The arrowheads in white
indicate regions where ruffles were observed after removing CytD. The regions with ruffles are shown at larger size in the inset in panels f, g, h,

k, I, and m, and the ruffles are indicated in the insets by arrows. Scale bar represents 30 pm.

hand, is mostly localized at the plasma membrane along
the edges of the cell (Figure 5b, Figure 6b). Here, we
followed the protocol of Peyrollier et al. [52] who treated
their cells for 2 hours, and who confirmed then using
rhodamine-phalloidin staining that actin depolymerization

had, indeed, occurred. In preparatory control experiments,
we established that 2 hours was optimal for effecting
depolymerization of actin filaments and for appearance of
clumps of monomeric actin in this N19-cell system (not
shown) — these experiments were performed on fixed cells,
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Figure 6 Live-cell images of another N19-OLG treated with CytD for 2 hours (a-e), after 20 min recovery (f-j), after 40 min recovery
(k-0), and after 60 min recovery (p-t). Panels a, f, k, and p show GFP-actin signal; panels b, g, I, and q show RFP-MBP signal; panels ¢, h, m,
and r show the merge of GFP-actin and MBP-RFP signals; panels d, i, n, and s correspond to intensity plots along line 1, and panels e, j, 0, and t
represent intensity plots along line 2 for GFP-actin (green) and RFP-MBP (red). The intensity plots are in arbitrary units and do not quantitatively
reflect the MBP and actin enrichment at the sites analyzed, but show changes in relative intensity of MBP and actin, their location and their degree of
co-localization with time. The arrowheads in white indicate regions where ruffles were observed after removing CytD. Scale bar represents 30 um.
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both transfected with RFP-MBP and untransfected, and
stained with rhodamine-phalloidin. Other precedents in
the literature report 2—4 hours of CytD exposure of pri-
mary OLGs to be most efficacious in depolymerizing actin
microfilaments [34,35]. Here, the changes in the GFP sig-
nal confirmed further the depolymerization upon exposure
to the drug.

Removal of CytD from the N19-cell medium results in
a more diffuse distribution of actin filaments at the
plasma membrane. Actin filaments are also distributed
in membrane ruffles formed 20-40 min after removing
CytD from the cell medium (indicated by white arrow-
heads in Figure 5f, k). The ruffled region is shown en-
larged in insets in Figure 5h, k-m, and the ruffles are
indicated by white arrows in the insets. Since the actin
fluorescence intensity is so low in the presence of CytD,
the most reasonable explanation for the increase of
actin-GFP intensity after drug removal is simply the
polymerization of actin filaments, as confirmed by
rhodamine-phalloidin staining of fixed cells.

Membrane ruffles are regions of transient actin assem-
bly and dis-assembly and their occurrence during the
repolymerization of actin is not unusual. However, in this
case, they were not observed in all the cells studied. Close
inspection of the ruffles indicates rapid co-localization of
MBP with actin in these regions (Figure 5, panels f-h,
k-m). The MBP and actin intensity also both increased at
the same time after repolymerization of actin filaments
at certain sites at the plasma membrane. Line-intensity
profiles measured along two different lines plotted across
the plasma membrane at these sites show increased
co-localization of MBP and actin at these sites in the first
20-40 min after recovery (Figure 5i, j, n, 0), compared to
the pattern after incubation with CytD (Figure 5d, e). Since
the intensity is plotted in arbitrary units (AU), the increase
in absolute intensity is not always obvious in the line-
intensity profiles, although an increase is seen in Figures 5j
and 6i, j, n, o, s, with a decrease in Figure 6t at 60 min.
Both MBP and actin distribution simultaneously change at
one site (Figure 5i, n in comparison to Figure 5d) and a
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new peak of co-localized MBP and actin intensity appears
at 40 min (Figure 5n), whereas MBP and actin increase in
intensity at the other site at 20-40 min (Figure 5e, j, 0). At
60 min after recovery from CytD treatment, however,
there is a drop in intensity of MBP and actin at one site
(Figure 5t) but not the other site (Figure 5s), and mem-
brane ruffles are diminished.

In this work, ten different cells were examined in several
different experiments. The examples shown in Figure 5
and Figure 6 for two different cells are representative and
in agreement with each other. In Figure 6, changes in both
MBP and actin distribution occurred at both sites analyzed
in this second cell, and the MBP and actin increase in in-
tensity and become co-localized at the plasma membrane
by 20—40 min after CytD removal. By 60 min, the intensity
of both MBP and actin and the degree of co-localization
at these sites had decreased, indicating dynamic changes
in the distribution of both proteins and of the cytoskeleton
occurring during this time period. Thus, there is a marked
change in distribution and co-localization of actin and
MBP in these cells by 20 min after removal of CytD when
the actin cytoskeleton undergoes repolymerization. It is
possible in Figure 5 and Figure 6 that the MBP and actin
may be newly-synthesized, but if so, MBP is enriched at
the sites of actin repolymerization and/or synthesis, sug-
gesting that the two proteins interact.

Discussion
We have shown here that classic MBP isoforms are spe-
cifically co-immunoprecipitated from primary OLGs in
complexes with actin, tubulin, and several SH3-domain
proteins (Fyn, ZO-1, and cortactin). In 1% TX-100, the
MBP/actin/tubulin complexes were present in the pellet
obtained by centrifugation at 14,000 g, but were non-
specifically bound by the control antibody beads from
the supernatant. They were more efficiently solubilized
in the supernatant by both 1% TX-100 and 1% NP-40,
allowing their specific immunoprecipitation from the
supernatant in addition to the pellet. Addition of 1%
DOC to this detergent mixture disrupted these protein
complexes. Although NP-40 is similar to TX-100, it is
less hydrophilic than TX-100 (Sigma product data sheet)
and may solubilize lipid better and/or release protein
complexes from membranous domains. In contrast, DOC
is a harsher, denaturing detergent which can disrupt
protein-protein interactions. Different degrees of enrich-
ment of different proteins in the immunoprecipitated ma-
terial indicate that the MBP complexes are heterogeneous.
The 18.5-kDa MBP isoform is a small, highly-basic
protein that interacts electrostatically with negatively-
charged proteins such as actin and tubulin, and with the
SH3-domain proteins also through its single SH3-ligand
domain at its proline-rich region comprising amino
acids T92-S99 (murine 18.5-kDa sequence numbering)
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[9,10]. Although these proteins all bind directly to MBP
in vitro (reviewed in [27]), it is unlikely that such a small
protein can interact with all of these other proteins at
once in vivo [61]. For instance, we have shown in vitro
that it can bind actin filaments and microtubules to each
other [26], but its simultaneous binding to more than
one of the other proteins has not been investigated.
Most likely here, some molecules of MBP in the immu-
noprecipitated material are bound to some of the pro-
teins that are detected, and other molecules are bound
to the other proteins that are detected.

These proteins may have been bound indirectly to MBP
through other proteins or through lipids, even when in the
supernatant. This may explain why significant amounts of
these proteins were also in the control immunoprecipitate.
Since MBP binds tightly to negatively-charged lipids and
can bind actin filaments, microtubules, and the SH3-
domain protein Fyn to a lipid bilayer [24-26], it is quite
likely that these immunoprecipitated complexes are large
and bound to lipid domains. Such large complexes would
be quite likely to bind non-specifically to control IgG or
beads in addition to specific binding to anti-MBP. The fact
that the amounts of all proteins precipitated were repro-
ducibly greater in the anti-MBP immunoprecipitate, than
in the control immunoprecipitate, indicates that a signifi-
cant proportion of them were complexed with MBP.

The immunoprecipitation data here are supported fur-
ther by additional live-cell fluorescence microscopy ex-
periments performed on cultured, transfected N19-OLG
cells, extending an earlier and more comprehensive study
[39]. We had shown then by fluorescence microscopy that
18.5-kDa MBP transfected into N19-OLGs co-localized
with actin, tubulin, and the SH3-domain-containing pro-
teins cortactin and ZO-1, in membrane ruffles when stim-
ulated with PMA [39]. Moreover, it was co-localized with
Fyn in the cell body and process tips. Here, we have also
shown that actin filaments formed soon after removal of
CytD are co-localized with MBP at sites at the plasma
membrane and in new membrane ruffles of N19-OLGs.
Both MBP and actin intensity are increased at these sites,
indicating that both proteins redistribute to new sites
where they are co-localized when actin repolymerization
occurs. This observation supports our conclusions from
previous studies of transfected N19-OLGs showing that
MBP and actin associate in newly-formed membrane ruf-
fles after stimulation with PMA, and at membrane do-
mains resembling focal adhesion contacts formed after
stimulation with IGF-1 [39].

It is rare for co-immunoprecipitation studies alone to
prove simply and unequivocally that specific protein-
protein interactions actually do occur in vivo [62-64]. The
immunoprecipitation and microscopy data presented here
together thus support the thesis that these associations
also occur in living cells. It is acknowledged that the
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resolution of light microscopy is on the order of 0.5 pm
and a technique such as FRET (fluorescence resonance
energy transfer) might be able in future studies to demon-
strate direct binding of two proteins to each other in the
complexes in vivo. Nonetheless, the facts that they bind
in vitro, are co-immunoprecipitated from primary OLGs,
and, in the case of actin and MBD, redistribute to and are
co-localized to the same regions of living cells at similar
times after repolymerization (and/or new synthesis) of
actin filaments support the conclusion that they are likely
present together with MBP in the same membrane do-
mains, where MBP may be able to influence their behavior
and activities, as we have previously reviewed [27]. More-
over, the extensive myelin fractionation literature is also
wholly consistent with our immunoprecipitation results
here on primary OLGs. Classic MBP isoforms have been
found to be enriched in TX-100 insoluble, low density
membrane domains from myelin that contain glycosphin-
golipids, actin, tubulin, Fyn, and other proteins [56]. Simi-
lar enrichments of MBP isoforms with Fyn have been
shown in CHAPS-resistant myelin microdomains [65,66].
These associations can be biologically significant in two
ways as described next.

First, Fyn is a member of the Src family of tyrosine
kinases with important roles in OLG differentiation and
myelination (reviewed in reference [67]). Cortactin is an
actin-binding protein that plays a role in regulation of
actin dynamics in cell lamellipodia and ruffles [68]. The
scaffold protein ZO-1 is associated with numerous signal-
ing proteins, tight and gap junctions, and the actin cyto-
skeleton [69]. It may be associated with gap junctions in
OLGs [70,71], and in the radial component of myelin,
which contains other tight junction proteins [72]. The ra-
dial component of myelin is TX-100-insoluble along with
MBP (especially the 17-kDa and 21.5-kDa isoforms), actin,
tubulin, CNP, and glycosphingolipids [53,54], further sug-
gesting an association of MBP with tight junction proteins.
Interactions of classic MBP isoforms with the cytoskel-
eton, ZO-1, and other SH3-domain proteins such as Fyn
may allow it to participate in regulation of junctional ac-
tivity [69].

Second, many myelination events, such as OLG process
extension, membrane sheet formation, and ensheathment
of the axon depend on dynamic changes in the cytoskel-
eton [73,74]. Association of actin and tubulin with MBP
during dynamic changes in the cytoskeleton, as demon-
strated here after actin repolymerization, points to a
functional interaction between the two proteins, and
implicates diverse structural and networking roles for
MBP during myelin formation and turnover [27]. Even
adult myelin is a highly-dynamic structure [75], and it
can be expected that an essential protein such as classic
MBP would participate in local cytoskeletal remodeling
[73,76], making it another notable example of intrinsically-
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disordered accessory proteins responsible for the dynamic
regulation and adaptation of cytoskeletal systems [77-81].

Conclusions

The co-immunoprecipitation of MBP with actin, tubulin,
Fyn-kinase, ZO-1 and cortactin from primary OLGs, and
the co-localization results from N19-OLGs showing that
both actin and MBP re-associate on actin polymerization
and that both proteins rapidly redistribute to new sites of
actin polymerization, provide more direct evidence for as-
sociation of MBP with these proteins in primary OLGs
and in live cells, and reinforce earlier conclusions that
these proteins associate in cells as found in vitro using
purified proteins.
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