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Abstract 

Background: African elephants comprise two species, the savanna elephant (Loxodonta africana) and the forest 
elephant (L. cyclotis), which are distinct morphologically and genetically. Forest elephants are seriously threatened 
by poaching for meat and ivory, and by habitat destruction. However, microsatellite markers have thus far been 
developed only in African savanna elephants and Asian elephants, Elephas maximus. The application of microsatellite 
markers across deeply divergent lineages may produce irregular patterns such as large indels or null alleles. Thus we 
developed novel microsatellite markers using DNA from two African forest elephants.

Findings: One hundred microsatellite loci were identified in next generation shotgun sequences from two African 
forest elephants, of which 53 were considered suitable for testing. Twenty-three microsatellite markers successfully 
amplified elephant DNA without amplifying human DNA; these were further characterized in 15 individuals from 
Lope National Park, Gabon. Three of the markers were monomorphic and four of them carried only two alleles. The 
remaining sixteen polymorphic loci carried from 3 to 8 alleles, with observed heterozygosity ranging from 0.27 to 
0.87, expected heterozygosity from 0.40 to 0.86, and the Shannon diversity index from 0.73 to 1.86. Linkage disequilib-
rium was not detected between loci, and no locus deviated from Hardy–Weinberg equilibrium.

Conclusions: The markers developed in this study will be useful for genetic analyses of the African forest elephant 
and contribute to their conservation and management.
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Findings
Among African elephants, genetic studies have estab-
lished that savanna elephants, Loxodonta africana, and 
forest elephants, Loxodonta cyclotis, are morphologi-
cally distinct [1] and comprise deeply divergent lineages 
separated by 4–7 million years of evolution (e.g. [2, 3]). 
Forest elephants have been extirpated or reduced to criti-
cally low densities across much of their former range, and 
they remain under serious threat from poaching for meat 
and ivory, and from habitat destruction [4]. Microsatel-
lite marker studies have thus far been developed only in 

African savanna elephants and Asian elephants, Elephas 
maximus. The application of microsatellite markers 
across such deeply divergent lineages may produce null 
alleles or irregular patterns [5]. For example, some micro-
satellite markers developed in savanna elephants show 
an allele size range in forest elephants that suggests the 
presence of large indels [6]. Likewise, of ten microsatel-
lite loci developed in domestic cats (Felis catus) that were 
later tested in pumas (Puma concolor), six loci showed 
differences in the structure of repeat units and many 
alleles reflected size homoplasies [5]. In this study, we 
developed novel microsatellite markers using DNA from 
two African forest elephants, and tested and character-
ized the markers using high quality DNA extracted from 
tissue samples of 15 forest elephants from Lope National 
Park, Gabon.
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This study was conducted under the University of Illi-
nois Institutional Animal Care, and Use Committee 
approved protocol number 12040.  Samples were col-
lected in full compliance with required Convention on 
International Trade in Endangered Species of Wild Fauna 
and Flora and other institutional permits.

DNA was extracted as previously described [7]. 
Genomic DNA samples from two forest elephants, 
SL0001 from Sierra Leone (West African Guinean Forest) 
and LO3502 from Lope National Park, Gabon (Central 
African Congolian Forest), were sequenced on 1/16th of a 
PicoTiterPlate (PTP) (1/8 PTP total) on the Roche 454 GS 
FLX+  platform at the UIUC high-throughput sequenc-
ing and genotyping unit. The whole genome sequence 
data was pooled together and MSATCOMMANDER 
1.0.8 [8] was run to identify microsatellite repeat motifs 
by screening the sequences for di-, tri-, tetra- and penta- 
nucleotide motifs, with a minimum of 8 repeats each. 
MSATCOMMANDER interfaces with PRIMER 3 soft-
ware [9], and was modified to allow a minimum length 
of 18  bp of flanking DNA between the microsatellite 
repeat and the primer sequences [10, 11]. Primers were 
designed to amplify a target region of 150  bp or less, 
inclusive of the two primer lengths, so that they would 
be appropriate for use with degraded DNA from dung or 
from other samples with low quality DNA. Default set-
tings were otherwise used for MSATCOMMANDER 
[8]: optimal primer length of 20 bp (minimum 18 to the 
maximum 22 bp), optimal melting temperature of 60 °C 
(range of 58–62 °C).

To preclude the targeting of repetitive regions, the fol-
lowing steps were taken. First, a blast search was per-
formed using each primer sequence as query against 
the GS FLX reads, using a Perl script to identify prim-
ers that would target repetitive regions. Second, NCBI 
BLAST (http://www.blast.ncbi.nlm.nih.gov/Blast.cgi) 
was used to search each sequence of the locus against the 
savanna elephant (L. africana) nonredundant database. 
The short tandem repeats of the sequences were masked 
using RepeatMasker (http://www.repeatmasker.org) 
before conducting the Blast search. Third, the software 
In-Silico PCR on the UCSC genome browser (https://
www.genome.ucsc.edu/cgi-bin/hgPcr) was used to query 
oligonucleotide sequences against the human genome 
(GRCH37/hg19 assembly) to ensure that primers would 
not target human DNA, since human DNA contamina-
tion may be a concern with highly degraded DNA sam-
ples. Forest elephant microsatellite loci that were found 
to be in repetitive regions or to have high similarity to 
human DNA sequences were removed from further 
consideration.

In total, 53 of the first 100 microsatellite potential 
primer pairs identified using MSATCOMMANDER 1.0.8 
[8] passed these criteria. These 53 potential primer pairs 
were each tested with DNA extracted from two African 
forest elephants, as well as on DNA from two African 
savanna elephants, with human DNA and water used as 
controls. At 18 microsatellite loci, alternative primers 
were subsequently designed and tested in an attempt to 
reduce artefactual shadow bands or to improve ampli-
fication success; while at two loci new primers were 
designed and tested after the originals were found to 
amplify human DNA in the negative control. We verified 
that 23 of 53 microsatellite loci produced amplicons in 
both elephant species without amplifying human DNA. 
We characterised these 23 microsatellite loci using the 15 
forest elephant samples from Lope National Park, Gabon 
(Table 1).

All forward primers included the M13 forward 
sequence (TGTAAAACGACGGCCAGT) at the 5′ end. 
A FAM- or VIC- fluorescent labeled M13 forward primer 
was included in the reaction to label the PCR amplicon 
[12], along with a conventional reverse primer. The PCR 
mix consisted of 1X PCR buffer II (Life Technologies, 
Carlsbad, CA, USA), 2 mM MgCl2, 200 μM of each dNTP 
(Life Technologies) with 0.04 units/μl final concentra-
tion of AmpliTaq Gold DNA Polymerase (Life Technolo-
gies) along with 1.2 µl of primer mix. A detailed protocol 
describing the components of the PCR mix is provided in 
the Additional file 1.

The PCR cycling program for all but one of the primer 
pairs was designated “touchdown 50” and is described in 
the Additional file 1. The locus Lcy-M45 produced a high 
degree of artefactual shadow bands, so the PCR cycling 
program was modified and the final annealing tempera-
ture was kept higher to reduce background noise. This 
alternative was designated “touchdown 56” and is also 
detailed in the Additional file 1. PCR amplicons were run 
on a 2 % agarose gel with ethidium bromide and exam-
ined under UV light. The remaining amplicon from two 
different loci that were labeled with different fluorescent 
dyes were mixed, then diluted depending on the intensity 
of the image on the agarose gel photo, followed by analy-
ses on an ABI 3730XL capillary sequencer at the Univer-
sity of Illinois at Urbana-Champaign High-Throughput 
Sequencing and Genotyping Unit. The software Genema-
pper Version 3.7 (Life Technologies) was used to call and 
bin alleles. Genotyping was conducted independently by 
two individuals to ensure consistency of calls.

MS Tool v3 [13], Arlequin version 3.5.1.3 [14], and 
GenAlEx 6.5 [15] were used to calculate expected het-
erozygosity (He) and observed heterozygosity (Ho); 

http://www.blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.repeatmasker.org
https://www.genome.ucsc.edu/cgi-bin/hgPcr
https://www.genome.ucsc.edu/cgi-bin/hgPcr
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the estimates were confirmed as consistent among the 
software packages. GenAlEx 6.5 [15] was also used to 
calculate Shannon’s diversity index (I) and to make 
allele histograms for each locus (Additional file  1). 
Shannon’s diversity index is used to quantify biologi-
cal diversity and accounts for both abundance and 
evenness of the variation present. Shannon’s diversity 
index uses allele frequencies and quantifies the infor-
mativeness of the markers, with higher values for more 
informative markers, and a value of 0 for monomor-
phic markers [16]. Microsatellite data were tested for 
deviation from Hardy–Weinberg equilibrium (HWE) 
and for linkage disequilibrium (LD) using Genepop 
4.2 [17]. A Markov chain algorithm was used to test 
for HWE using 10,000 dememorization steps, 200 
batches and 1000 iterations per batch. LD was tested 
using 10,000 dememorization steps, 100 batches and 
1000 iterations per batch for each pairwise comparison 
between loci.

The 23 primer pairs successfully amplified microsatel-
lite products in all 15 DNA samples from Lope (Table 1). 
Microsatellite markers Lcy-M5, Lcy-M42, and Lcy-
M52 were monomorphic and Lcy-M15, Lcy-M20, 
Lcy-M22, and Lcy-M39 carried only two alleles in the 
Lope samples and were removed from further consid-
eration. At the remaining 16 loci, the number of alleles 
ranged from 3 to 8 with an average of 5.00 ± 0.41 (SE). 
The average observed heterozygosity across the 16 loci 
was 0.64 ± 0.04 (SE), with the highest value being 0.87. 
The average expected heterozygosity across the 16 loci 
was 0.63 ± 0.04 (SE), with the highest value being 0.86. 
The average Shannon diversity index was 1.23  ±  0.10 
(SE), with a range from 0.73 to 1.86. There was no sig-
nificant linkage disequilibrium between markers after 
Bonferroni correction (p > 0.0004). Among 16 markers, 
none deviated from HWE after Bonferroni correction 
(p > 0.003).

Of the 53 novel microsatellite markers developed in 
forest elephants, 23 loci were tested and characterized. 
Sixteen of 23 markers displayed more than 2 alleles and 
are recommended for future use. These microsatellite 
markers will allow assessment of the genetic diversity and 
structure of forest elephant populations, which would aid 
in their conservation and management.
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