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of Leptospira excreted in urine: beyond rats 
as important sources of transmission 
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Abstract 

Background:  Leptospirosis is a major zoonotic disease with widespread distribution and a large impact on human 
health. Carrier animals excrete pathogenic Leptospira primarily in their urine. Infection occurs when the pathogen 
enters a host through mucosa or small skin abrasions. Humans and other animals are exposed to the pathogen by 
direct contact with urine, contaminated soil or water. While many factors influence environmental cycling and the 
transmission of Leptospira to humans, the load of pathogenic Leptospira in the environment is likely to play a major 
role. Peridomestic rats are often implicated as a potential source of human disease; however exposure to other 
animals is a risk factor as well. The aim of this report is to highlight the importance of various carrier animals in terms 
of the quantity of Leptospira shed into the environment. For this, we performed a systematic literature review and a 
meta-analysis of the amount of pathogen that various animal species shed in their urine.

Results:  The quantity of pathogen has been reported for cows, deer, dogs, humans, mice, and rats, in a total of 14 
research articles. We estimated the average Leptospira per unit volume shed by each animal species, and the daily 
environmental contribution by considering the total volume of urine excreted by each carrier animal. Rats excrete the 
highest quantity of Leptospira per millilitre of urine (median = 5.7 × 106 cells), but large mammals excrete much more 
urine and thus shed significantly more Leptospira per day (5.1 × 108 to 1.3 × 109 cells).

Conclusions:  Here we illustrate how, in a low-income rural Ecuadorian community, host population demographics, 
and prevalence of Leptospira infection can be integrated with estimates of shed Leptospira to suggest that peridomes-
tic cattle may be more important than rats in environmental cycling and ultimately, transmission to humans.
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Background
Leptospirosis is a zoonotic disease caused by spiro-
chete bacteria in the genus Leptospira. Early stages of 
human leptospirosis are characterized by non-specific 
symptoms such as headaches, high fever, jaundice, and 
mucosal hemorrhages; severe disease may produce mul-
tisystem complications such as acute renal or hepatic 
failure, or severe pulmonary hemorrhaging among other 

pathologies [1]. A variety of animals including rats, 
horses, cattle, dogs, pigs [2–5], and numerous wild life 
species such as bats, coyotes, raccoons, sea lions, opos-
sums, coyotes, white-tailed deer and even frogs and cai-
mans [6–11] have also been shown to carry pathogenic 
Leptospira. Upon infection, Leptospira bacteria become 
particularly concentrated in the kidneys and genital tracts 
[12] where they can be shed into the environment via 
urine. As such, any infected human or animal can poten-
tially infect others directly or indirectly by contaminating 
the environment. Outside a host, pathogenic Leptospira 
can survive in soil and water [13, 14]. Transmission can 
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occur when contaminated urine, soil, or water comes into 
contact with exposed mucosa, wounded skin or when 
ingested [14, 15].

Human and animal leptospirosis outbreaks are most 
commonly reported in tropical rural and urban slums [1, 
16–18], however they also occur in cities throughout the 
world [18–21]. In urban areas, where most studies have 
been conducted [15], rats and dogs are common and have 
often been identified as potential sources of human infec-
tion [1, 2, 5, 14, 22–25]. Contact with other animals, such 
as livestock, is commonly regarded as an occupational, 
rather than peridomestic risk factor [26, 27]. However, 
in rural areas, contact with a variety of animals and live-
stock can be more common and therefore not restricted 
to occupational exposure [28, 29]. In many agrarian and 
pastoralist communities, families live in close proximity 
to their animals, increasing the likelihood of peridomes-
tic contact for all family members. In tropical developing 
countries, up to 65% of humans live in rural areas [30], 
and despite the likely importance of a diverse array of 
potential animal hosts and the impact of the environ-
ment, the role of rats is perhaps overrepresented in the 
peer-reviewed and public health literature.

Our aim here is to provide a focused meta-analysis to 
explore the potential importance of a variety of animals 
in shedding Leptospira into the environment. In doing 
this, we focus on species-specific estimates of the amount 
of Leptospira shed in urine. To illustrate the potential 
load of Leptospira shed into the environment via cattle 
urine, we combined prevalence and demographic data 
from a highly endemic rural community in Ecuador with 
quantitative shedding estimates from individual ani-
mals. We thus discuss the importance of host densities 
in determining the overall quantity of Leptospira shed 
into the environment. Given the paucity of data on many 
animals, our analysis is restricted to a small number of 
peridomestic species and one wild species. The role of 
different animals in the environmental cycling of these 
pathogens is likely regionally and culturally specific and 
may be impacted by the dynamic nature of Leptospira 
strain or species prevalence. However, knowledge of the 
potential roles of a variety of animals is essential for esti-
mating risks posed by different host species towards a 
better understanding of conditions under which disease 
or outbreaks are most likely.

Methods
Quantifying shed Leptospira
We searched Pubmed (http://www.ncbi.nlm.nih.gov/
pubmed) and Web of Science (http://apps.webofknowl-
edge.com) on October 24th, 2015 using the terms 
“Leptospira AND ((Shedding) OR (Excretion) OR (Lepto-
spiruria))” without restrictions on publication date. We 

retrieved 110 titles from Web of Science and 125 from 
Pubmed. Removing duplicates left 156 total. By screen-
ing abstracts, we excluded 126 papers that were not 
about leptospirosis, did not quantify Leptospira in urine, 
or were in languages other than English or Spanish. We 
further screened the 30 remaining papers to include only 
14 that reported the quantity of Leptospira in urine of 
animals infected naturally or experimentally (Additional 
file 1: Figure S1). Quantity of shed Leptospira per millili-
tre by animal type was either extracted from manuscript 
figures using WebPlot Digitizer [31] or from manuscript 
tables. Quantity shed by dogs was kindly provided by Jar-
lath Nally and Pablo Rojas [32]. For each manuscript, we 
recorded characteristics of the quantification method: 
target gene, lowest limit of detection (lLoD), and Lepto-
spira clade [17] specificity of assays (Table 1). Leptospira 
load per millilitre of urine was registered for each animal 
type (Additional file 2: Table S1).

Host comparisons
We performed a Kruskal–Wallis test [33] to assess differ-
ences in the quantity of Leptospira shed among animal 
species (cattle, deer, dogs, humans, rats, and mice). To 
test whether the quantification method (qPCR—quan-
titative PCR, scanning laser densitometry, gel quantifi-
cation, or dark field microscopy enumerations) caused 
differences in the mean Leptospira quantity, we com-
pared results from within a host species across quantifi-
cation methods using the Wilcoxon Rank Sum Test [34]. 
Leptospira load per millilitre of urine were transformed 
to Log base 10 for data analysis. Average volume of urine 
shed per animal was calculated from the literature: cat-
tle [35], deer [36], dogs [37], humans [38], mice [39], and 
rats [40] (Additional file 3: Table S2).

Estimation of Leptospira quantity shed by cattle in an 
endemic rural community
In a previous study [41] we found that 35.4% of cows liv-
ing in Abdon Calderon Parish in Manabi province (Ecua-
dor) were shedding Leptospira DNA in their urine. The 
Ecuadorian Ministry of Agriculture conducted the most 
recent census in 2000 (http://sinagap.agricultura.gob.ec/
censo-nacional-agropecuario). Data from this census, 
contained in the Ministerio de Agricultura, Ganaderia, 
Acuacultura y Pesca (MAGAP) database [42], showed a 
total of 78 properties in Abdon Calderon with a total of 
886 cattle. We calculated the contribution of Leptospira 
from cattle by modifying the formula used by Costa et al. 
[5]: DPC = PS*Prev*Vol*Load, where DPC = Daily pop-
ulation contribution, PS  =  Population size (number of 
cattle per property size; 0.35–1, 1–5, 5–10 ha, and more 
than 10  ha), Prev =  prevalence in the given population 
(35.4%), Vol =  is the average volume of urine shed per 
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day, and load is defined as log of cell/mL. Given that the 
average volume of urine shed per urination event is 2 L 
[35] and the average number of urination events per day 
is 7–12 [43, 44], we calculated Vol = 16 L.

Results
Quantity of Leptospira shed in urine
We identified fourteen articles that quantified patho-
genic Leptospira in urine from experimentally or natu-
rally infected animals. Quantification methods included 
dark-field microcopy, scanning laser densitometry, gel 
electrophoresis, and qPCR (Additional file  2: Table S1). 
Five different qPCR assays have been used to quantify 
Leptospira in urine of experimental or naturally infected 
animals (Table  1). Four of five qPCR assays target only 
species that belong in the pathogenic clade while one 
assay also detected infectious Leptospira from the “inter-
mediate” clade. We found no significant differences in 
quantification methods among studies of cattle (W = 16, 
p = 0.095) and rats (W = 107, p = 0.238).

Shed Leptospira have been quantified for cattle, deer, 
dogs, humans, mice and rats (Table  1; Additional file  2: 
Table S1). The quantity of pathogenic Leptospira shed per 
millilitre of animal urine differs significantly by species 
(Fig. 1a; Additional file 4: Table S3). The lowest quantity 
of Leptospira shed per millilitre of urine was calculated 
for humans (32 cells/mL) while the highest quantity was 
calculated for rats (8 ×  108  cells/mL). When estimating 
median absolute quantity of Leptospira shed per day, 
mice shed the least (1.9 × 105 cells), and cattle and deer 
the highest with 6.3 ×  108 and 6.1 ×  108 cells, respec-
tively (Additional file 4: Table S3).

Daily population contribution of pathogenic Leptospira 
via cattle urine in an endemic rural community
The estimated daily quantity of pathogenic Leptospira 
shed by cattle in Abdon Calderon (Ecuador) was calcu-
lated using the local prevalence in cattle of 35.4% [41], 

demographic data collected by MAGAP [42], and daily 
quantity (median) of Leptospira shed by cattle (Addi-
tional file 4: Table S3). Grazing range characteristics are 
likely to play a role in the concentration of environmental 
Leptospira as well as the likelihood of direct or indirect 
contact of contaminated urine by humans. Some proper-
ties in this area are fenced and others are not, but such 
information was not registered in the census database, 
limiting our ability to make inferences about interactions 
of animals across properties or with wildlife. In Abdon 
Calderon, the lowest estimate (4.9 × 103 cells/m2/day) of 
the amount of pathogenic Leptospira shed via cattle urine 
was associated with the lowest estimated density of cattle 
(1 animal in 4.2  ha). Conversely, given that some herds 
with as many as 40 cattle were confined to a grazing area 
of only 2  ha, we estimated the amount of pathogenic 
Leptospira shed via urine per day to be 4.2 ×  105  cells/
m2/day. Importantly, 91 cattle at the study site live on 
properties without grazing areas (Table  2). These cattle 
are therefore moved through the community to drink 
and graze but are likely to spend much of their time con-
fined to a very small area. These cattle may be shedding 
approximately 1.96 ×  1010  cell/day, however we cannot 
estimate the area that they may contaminate.

Discussion
A wide variety of animals can be infected with leptospira 
and might transmit the pathogen to humans, however 
the relative roles of each animal species is not well under-
stood. Given the role of urine in seeding the environment 
with Leptospira, we illustrate how animal physiology and 
population data can be used to estimate the environmen-
tal load of the pathogen. Rats are traditionally thought 
to be the main reservoir for human transmission even 
though a variety of animals have also been implicated. 
Our results show that while rats may excrete the high-
est concentration of pathogen, the concentration, cou-
pled with volume and animal density will dictate the total 

Table 1  Techniques used to measure quantity of Leptospira in urine

a  Leptospira species or clade as designated according to Levett [17]
b  Lowest limit of detection as reported by authors

Target Gene Leptospira cladea Method lLoDb Reference

– All Leptospira species Darkfield microscopy Semiquantitative Nally et al. [45]; Monahan et al. [46]

Non identified Pathogenic clade Conventional PCR Semiquantitative Gerritsen et al. [47, 48]

– Pathogenic clade Slot blot -Scanning laser densitometry Semiquantitative Zuerner et al. [49]

16S rrna Pathogenic clade
Intermediate clade

TaqMan PCR 10 cells/mL of urine Smyth et al. [50, 51]

lipl32 Pathogenic clade TaqMan PCR 101 to 102 cells/mL of urine Sttodard et al. [52]

lipl32 Pathogenic clade TaqMan PCR 3GEq/4.5 μL of extracted DNA Rojas et al. [32]

lipl32 Pathogenic clade TaqMan PCR 6 Geq/5 μL of extracted DNA Villumsen et al. [53]

gyrB Pathogenic clade SYTO9 PCR 103 cells/mL Subharat et al. [54]
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amount of pathogen in the environment. Our results 
illustrate how larger host species may play an impor-
tant role in leptospirosis transmission and should not be 
overlooked.

Urine is the primary avenue for shedding Leptospira 
and thus plays a central role in the environmental cycling 
of this pathogen and infection risk [2]. Contact with con-
taminated urine, either directly or indirectly through 
contaminated soil or water can lead to transmission 
[14]. Many animals have been documented as compe-
tent hosts to Leptospira, but it is likely that these animals 
represent only a fraction of likely hosts that may play 
important roles in the environmental cycling and epi-
demiology of Leptospira. While contact with cattle and 
other livestock has been associated with transmission to 
humans, this interaction is mostly treated as an occupa-
tional risk, given that many studies were conducted in 

rural and urban slums where non-occupational animal 
contact mostly involves peridomestic rats and dogs. In 
many human populations, however, interactions within a 
diverse group of wildlife are common. Our aim here was 
to explore the potential roles of a variety of animals in 
Leptospira eco-epidemiology, illustrate how animal pop-
ulation data can be used to estimate the environmental 
load of Leptospira, and discuss other variables that may 
contribute to the likelihood of human infection.

We identified 14 research articles that quantified the 
amount of Leptospira shed in urine. These works were 
limited to six species and employed a number of differ-
ent methods. As multiple articles employed different 
methods for quantifying Leptospira in urine from rats 
and cattle, we were able to determine that these different 
methods did not result in significant differences. Molecu-
lar methods may over-estimate quantity of Leptospira 
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Fig. 1  Quantity of Leptospira shed by animals. a Quantity of shed Leptospira per milliliter (Log10) of urine is significantly different among animals 
(Kruskal–Wallis Chi squared = 96.33, p value <2.2 × 10–16). Comparisons of quantity of Leptospira shed between pairs of animals were all signifi-
cantly different except humans and mice (Kruskal–Wallis Chi squared = 0.91, p = 0.34). b Estimates of absolute quantity of Leptospira shed per day 
differ significantly among animals (Kruskal–Wallis Chi squared = 73.6, p = 1.806 × 10–14). Quantity of Leptospira shed per day by cattle and deer 
are significantly higher than dogs, humans, mice and rats (Kruskal–Wallis Chi squared = 45.6, p = 1.45 × 10–11). No significant differences were 
found when comparing cattle and deer, dogs and mice, humans and mice, and rats and mice. Box-plots display the medians, interquartile range 
(IQR), 1.5 × IQR, and suspected outliers >1.5 × IQR

Table 2  Daily population contribution of Leptospira (DPC) by cattle herds in Abdon Calderon, Manabi, Ecuador

Grazing area Number of properties Number of cattle Quantity of Leptospira shed per m2

Total (Min–Max) Total (Min–Max)

No grazing area 18 91(1–20) 1.96 × 1010 cell/day

0.35 to 1 ha 9 26 (2–5) 4.2 × 104 to 1.5 × 105

>1 to 5 ha 30 219 (1–40) 4.9 × 103 to 4.2 × 105

>5 to 10 ha 10 176 (2–70) 5.9 × 103 to 1.5 × 105

More than 10 ha 10 354 (12–80) 9.2 × 103 to 4 × 104
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excreted in urine as they detect alive and dead bacteria, 
however microscopy quantification, detecting live cells 
shed by rats are within the range detected by qPCR, 
suggesting that the quantity of dead cells may not be 
significant. Furthermore, there is no evidence that this 
will affect relevant comparisons across species as per-
formed in this meta-analysis. Among other variables, 
the absolute quantity of Leptospira shed per day by an 
infected animal depends on the quantity of pathogen in 
urine as well as the total daily volume of excreted urine. 
While rats may shed more Leptospira per unit volume 
of urine, the small overall volume of excreted urine lim-
its their overall contribution to the environmental load. 
Larger animals such as cattle and deer shed less Lepto-
spira per unit volume of urine, however the sheer volume 
of urine excreted by such animals can result in a signifi-
cantly higher environmental contribution compared to 
rats and other animals. In some environments, however, 
extremely high rat densities will drastically increase the 
amount of urine shed into the environment. Therefore, in 
order to determine the overall contribution of an individ-
ual host species, population density and prevalence must 
also be considered.

There is little information on the prevalence of Lepto-
spira in a given host species [55], and prevalence is likely 
to vary across regions and seasons [15, 56]. In 2014–
2015, we estimated Leptospira prevalence among cattle 
(35.4%), pigs (5.7%), and rats (2.8%) in Abdon Calderon, 
Ecuador [41]. Demographic data on cattle ownership 
were not collected for this time period and the most 
recent data were collected in 2000. Undoubtedly popu-
lation sizes have changed, however these data illustrate 
how demographic and prevalence data can be used to 
estimate the daily load of Leptospira shed per unit area. 
Given the availability of host population and leptospirosis 
prevalence data, models should ideally include multiple 
host species, including humans.

Animal behavior and animal husbandry practices will 
influence the load and distribution of pathogens shed 
into the environment as well as the likelihood of trans-
mission to humans. Animal density will affect environ-
mental load and our consideration of grazing area only 
provides a rough illustration of how shed Leptospira may 
be distributed. Cattle are gregarious, and even when pro-
vided a large grazing area, may spend a large portion of 
their time concentrated in small areas associated with 
bedding, feeding and watering, resulting in uneven dis-
tribution of shed Leptospira. Animal husbandry practices 
may increase the likelihood of human contact with shed 
Leptospira. Many cattle owners (23%) in Abdon Calde-
ron do not own property on which to graze their herd. 
These animals (10.5% of the total cattle population) graze 
in public areas and are thus not segregated from the 

general human population. Also, these animals will spend 
significant amounts of time in the small peridomestic 
environment, increasing contact with family members, 
and presenting a non-occupational risk of infection. Sim-
ilarly, humans may be more likely to come into contact 
with Leptospira shed from other humans. Human preva-
lence rates may be underestimated if only symptomatic 
patients are considered, and an infected human may 
shed 1.3 ×  106  cells per day. Human shedding may not 
play a significant role in the environmental cycling and 
transmission of Leptospira in places with good sewage 
infrastructure and available toilet facilities, however such 
infrastructure is lacking in most of the world. More com-
plex modeling of Leptospira shedding must incorporate 
higher-resolution estimations of distributional variation 
and how shed Leptospira may come into contact with 
other animals and ultimately, humans.

Climatic variation is likely to result in temporal changes 
in leptospirosis prevalence among humans [13, 57] and 
other animals. Climate and weather can impact host pop-
ulation sizes, distribution, behaviors, and interactions. 
Environmental conditions can also affect survivorship 
and environment distribution of shed Leptospira. Indeed, 
Leptospira have been shown to survive best in soil with 
high relative humidity and neutral pH [58, 59]. Flood-
ing and heavy rainfall have been associated with some 
leptospirosis outbreaks, but even during droughts, stag-
nant water or ponds may serve as refugia for Leptospira 
[60–62]. In Abdon Calderon across 2014–2015, recorded 
flooding events were rare and the local Health Ministry 
authorities reported isolated leptospirosis cases and no 
outbreaks. Flooding may serve as the main mechanism 
for distribution of shed Leptospira, providing a means for 
contacting Leptospira shed from animals that may not 
typically be transmitted between certain host species.

Lastly, the high genetic heterogeneity among Lepto-
spira has resulted in variation in virulence and a certain 
degree of host adaptation [2]. It is also likely that certain 
species or genotypes may have differential environmental 
survivorship. Fourteen out of 21 Leptospira species cause 
disease, and within them, more than 200 serovars have 
been described [17]. Knowledge of circulating genotypes 
must certainly play a role in epidemiological modeling of 
Leptospira.

Conclusion
We have focused this illustration on cattle; population, 
infection prevalence, and the quantity of Leptospira 
shed for many species are not available, and the high 
prevalence and high estimated daily shedding suggests 
that cattle in Abdon Calderon may have been the most 
important source of Leptospira in 2014–2015. However, 
more thorough modeling of environmental loads and the 
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likelihood of direct/indirect human contact with urine 
must consider multiple host species, host behavior 
or animal husbandry practices that increase the likeli-
hood of transmission to humans or other animals, and 
circulating pathogen genotypes that may differentially 
impact host species. To our knowledge, there are no 
reports that directly link an infected animal to a human 
leptospirosis case. Therefore, epidemiological investi-
gations coupled with genotyping data of the pathogen 
will provide valuable insights into the roles of different 
animals in leptospirosis transmission and will confirm 
or refute our hypothesis of the importance of urine vol-
ume for Leptospira load in the environment and risk for 
human health.
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