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Abstract 

Objective:  Dietary intervention is a practical prevention strategy for age-related hearing loss (AHL). Omega-3 (n-3) 
polyunsaturated fatty acids (PUFAs) may be effective in prevention of AHL due to their anti-inflammatory and tissue-
protective functions. Age-related changes in the hearing function of wild-type and Fat-1 transgenic mice derived 
from the C57BL/6N strain, which can convert omega-6 PUFAs to n-3 PUFAs and consequently produce enriched 
endogenous n-3 PUFAs, were investigated to test the efficacy of n-3 PUFAs for AHL prevention.

Results:  At 2 months, the baseline auditory brainstem response (ABR) thresholds were the same in Fat-1 and 
wild-type mice at 8–16 kHz but were significantly higher in Fat-1 mice at 4 and 32 kHz. In contrast, the ABR thresh-
olds of Fat-1 mice were significantly lower at 10 months. Moreover, the ABR thresholds of Fat-1 mice at low-middle 
frequencies were significantly lower at 13 months (12 kHz). Body weights were significantly reduced in Fat-1 mice at 
13 months, but not at 2, 10, and 16–17 months. In conclusion, enriched endogenous n-3 PUFAs produced due to the 
expression of the Fat-1 transgene partially alleviated AHL in male C57BL/6N mice.
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Introduction
Age-related hearing loss (AHL) is the most common 
cause of sensorineural hearing loss in adults and is one 
of the most prevalent age-related physical conditions 
[1, 2]. There are currently no established preventions 
or treatments for AHL, even though it is a high priority 
issue. Nutritional improvement is one potential inter-
vention, and omega-3 (n-3) polyunsaturated fatty acids 
(PUFAs), such as docosahexaenoic acid (DHA), are 
promising candidates for AHL prevention due to their 
potential prevention of cognitive decline [3]. In addition, 
anti-inflammatory and pro-resolving metabolites of n-3 
PUFAs are known to have protective effects in neurologi-
cal disorders [4].

Several studies have reported positive effects of n-3 
PUFAs on hearing function in humans, [5–7] while peri-
natal diets supplemented with high levels of DHA or n-3 
PUFAs have negative effects on the auditory systems of 
rat pups [8, 9] and adult rat offspring [10]. Therefore, the 
effects of n-3 PUFAs on hearing function remain unclear, 
particularly due to the unavoidable genetic and environ-
mental non-uniformity of human subjects.

In this study, we investigated the preventive effects of 
enriched endogenous n-3 PUFAs on the progression of 
AHL in Fat-1 transgenic mice (Fat-1 mice). The Fat-1 
mice express the nematode-derived Fat-1 gene encoding 
an enzyme to convert omega-6 (n-6) to n-3 PUFAs [11]. 
Thus, investigation of Fat-1 mice provides more reliable 
and more definitive results than the studies using con-
ventional dietary supplementation of PUFAs.

Main text
Methods
Animals and genotyping
Wild-type (WT) C57BL/6N mice were purchased from 
CLEA Japan. Heterozygous Fat-1 mice [11] were mated 
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with WT mice, and their male offspring were used. Mice 
were maintained on a normal diet (CE-2, CLEA Japan, 
Tokyo, Japan) with water ad libitum and housed under a 
standard 12 h light/12 h dark schedule.

Genotyping was performed as previously described 
[12]. The following primers were used to amplify the 
Fat-1 transgene: forward 5′-CAC​CAA​CCA​CAT​CGA​
CAA​AG-3′ and reverse 5′-CGA​CGT​GCT​GCA​GAT​AGG​
TA-3′. Polymerase chain reaction amplification was per-
formed for 30 cycles under the following parameters: 
denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, 
and extension at 72 °C for 2 min.

Cochlear function testing
Auditory brainstem responses (ABR) were recorded as 
previously described [13]. The animals were anesthetized 
with intraperitoneal injection of ketamine (100  mg/kg) 
and xylazine (20 mg/kg). Needle electrodes were placed 
subcutaneously at the vertex, the base of the pinna, and 
the back. ABR recordings were obtained using a TDT 
System 3 hardware and BioSigRP software (Tucker-Davis 
Technologies, Alachua, FL). ABRs were evoked with tone 
bursts of pure tones at frequencies of 4, 8, 12, 16, and 
32 kHz, which were generated using SigGenRP software 
and a digital-to-analog converter (RP2.1). ABRs were 
relayed to a programmable attenuator (PA5), an ampli-
fier (SA1), and a closed-field loudspeaker (CF1). The 
electrode outputs were delivered to an alternating cur-
rent preamplifier (P55, Astro-Med, West Warwick, RI) 
and amplified (× 100). Evoked responses were filtered 
with a band pass of 10–3000 Hz and were averaged with 
1000 sweeps. Responses were collected for stimulus lev-
els in 5-dB steps from sound pressure levels (SPLs) of 
100 dB to 10 dB. ABR threshold was defined as the lowest 
sound level at which reproducible waveforms could be 
observed. If no response was obtained at 100 dB SPL, the 
ABR threshold was defined as 105 dB SPL.

Tissue preparation
The mice were anesthetized with an intraperitoneal 
injection of ketamine (100 mg/kg) and xylazine (20 mg/
kg). The anesthetized mice were then transcardially per-
fused with 4% paraformaldehyde (P6148, Sigma-Aldrich, 
St. Louis, MO) in phosphate-buffered saline (PBS). The 
cochleae were removed and post-fixed in 4% paraformal-
dehyde overnight at 4 °C. The fixed cochleae were decal-
cified in 10% ethylenediaminetetra-acetic acid disodium 
salt dehydrate (345-01865, Dojindo, Mashiki, Japan) for 
2 days at 4 °C.

Cochlear whole‑mount
Microdissected cochlear pieces were blocked in 5% 
normal horse serum in PBS and 0.3% Triton X-100 for 

10  min at room temperature and stained with a rhoda-
mine–phalloidin probe (1:250, Cytoskeleton, Denver, 
CO) at room temperature for 30  min. Cochlear pieces 
were slide-mounted using Vectashield (Vector Labs, 
Burlingame, CA). Cochlear pieces were imaged using a 
fluorescence microscope (E800, Nikon, Tokyo, Japan). 
Stained cochlear whole-mounts were imaged using con-
focal microscopy (TCS SP5, Leica, Wetzlar, Germany). 
Quantitative results were obtained by evaluating 90 outer 
hair cells (OHCs) across three rows in a given micro-
scopic field.

Histological analysis of spiral ganglion (SG) neurons and stria 
vascularis (SV)
Decalcified tissues were embedded in paraffin, and cor-
onal Sects. (3  µm) were cut and mounted. The sections 
were stained with hematoxylin and eosin and visualized 
using a light microscope (BZ-9000, Keyence, Osaka, 
Japan). Three cochlear regions were used for evaluation 
of cochlear histology. Three sections per animal were 
used to calculate mean numbers. Area measurements 
and cell counts were performed using BZ-H1C (Key-
ence). The SG area was calculated for each section, and 
the SG neurons were counted. Three measurements of 
SV thickness were obtained from each image and were 
averaged.

Statistical analysis
Statistical analyses were conducted using StatMate 
IV (ATMS Company, Tokyo, Japan) or JMP® 12 (SAS 
Institute Inc., Cary, NC). All data are presented as 
means ± standard errors of the mean. The two-sample 
t-tests and two-way analyses of variance (ANOVA) 
followed by Bonferroni post hoc tests were used. P 
values < 0.05 after the Bonferroni correction were consid-
ered statistically significant.

Results
Time course of ABR thresholds and body weights
The C57BL/6N mice exhibit early onset and progres-
sion of AHL mainly due to a single nucleotide variant in 
the Cdh23 gene (Cdh23753A) [14, 15]. Fat-1 mice have a 
Cdh23753A/753A genotype for Cdh23 (Additional file  1: 
Fig S1). To determine the effects of enriched endog-
enous n-3 PUFAs on AHL progression, ABR thresholds 
were first measured at 2, 13, and 16–17  months of age 
(Fig. 1a). Although there were no differences in the ABR 
thresholds in response to 8-, 12-, or 16-kHz stimuli, the 
ABR thresholds were significantly higher in response 
to 4-kHz and 32-kHz stimuli in Fat-1 mice at 2 months 
(Fig.  1b). Unlike at 2  months, the ABR thresholds at 
13  months were significantly lower at 12  kHz in Fat-1 
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mice (Fig. 1c). No significant differences were observed at 
16–17 months (Fig. 1d).

WT and Fat-1 mice in the same colony were weighed at 
2, 13, and 16–17 months to evaluate the effect of enriched 
endogenous n-3 PUFAs on body weight, Although 
the body weights of WT mice increased and reached 

a plateau at 13 months, the body weights of Fat-1 mice 
increased more slowly and reached the same level as that 
reached by WT mice at 16–17 months (Fig. 1e). The body 
weights of Fat-1 mice were significantly lower than those 
of WT mice at 13 months (Fig. 1e). Therefore, enriched 
endogenous n-3 PUFAs slowed age-related weight gain.
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Fig. 1  Chronological changes in auditory brainstem response (ABR) thresholds and body weights. a Schematic timeline of the experimental 
protocol. b–d Mean ABR thresholds (± standard errors of the mean) for each time point (b 2 months, c 13 months, and d 16–17 months). Animal 
numbers were as follows: Wild-type (WT), n = 11; Fat-1, n = 15 in b WT, n = 18; Fat-1, n = 18 in c; and WT, n = 7; Fat-1, n = 5 in d. In the early stage 
(2 months), ABR thresholds were significantly elevated in Fat-1 mice compared with WT mice in response to stimuli at 4 and 32 kHz (b). In contrast, 
ABR thresholds of Fat-1 mice were significantly decreased at low-middle frequencies at 13 months (c). Time course of changes in body weight at 
2 months (wild-type [WT], n = 11; Fat-1, n = 15), 13 months (WT, n = 18; Fat-1, n = 18), and 16–17 months (WT, n = 7; Fat-1, n = 6) of age. e Body 
weights of WT and Fat-1 mice were not different in the early stage, but those of Fat-1 mice were significantly decreased at 13 months. No significant 
difference was observed between the two groups in the later stage (at 16–17 months). P values < 0.05 were considered statistically significant (*). 
OHC outer hair cell, SGN spiral ganglion neuron, SPL  sound pressure level, SV stria vascularis, ANOVA  analysis of variance, ns no significant difference
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We additionally evaluated the ABR thresholds 
at 10  months using a different colony. Although 
ABR thresholds for both WT and Fat-1 mice were 
increased compared to those of other groups (13 and 
16–17 months) due to unknown reasons, we found that 
the ABR thresholds were significantly different between 
the two strains at 10  months (Fig.  2a, Additional file  1: 
Tables  S1). These results suggest that enriched endog-
enous n-3 PUFAs delayed the early progression of AHL.

OHC survival rates at 2 and 16–17 months
Representative cochlear whole-mount images from 
WT and Fat-1 mice in the 32-kHz region at 2 and 
16–17 months are shown in Fig. 3a–d. Almost all OHCs 
were intact in both WT and Fat-1 mice at 2  months 
(Fig.  3a, b). In contrast, OHCs were severely damaged 
in both WT and Fat-1 mice at 16–17  months (Fig.  3c, 
d). OHC survival rates were not significantly different 
between these two groups at 2 months and 16–17 months 
(Fig.  3e, f ). In summary, OHC survival did not signifi-
cantly differ between the two groups at young (2 months) 
and old (16–17 months) stages.

Histological changes in cochleae at 2 and 13 months
Cochlear coronal sections were histologically investi-
gated at 2 and 13 months to assess the effects of enriched 
endogenous n-3 PUFAs on cochlear degeneration. No 
apparent cochlear degradations were observed in the SG, 
SV, or spiral ligament of WT or Fat-1 mice at 2 months 
(Fig.  3g, h). Although several indicators of cochlear 
degeneration were observed, no apparent differences 
were found between WT or Fat-1 mice at 13  months 
(Fig. 3i, j). The number of SG neurons and the thickness 

of the SV showed no significant differences between the 
two groups at 13 months (Fig. 3k, l). Therefore, no appar-
ent differences in age-related cochlear degeneration were 
found between WT and Fat-1 mice at 13 months.

Discussion
Dietary intervention may be a promising prophylaxis 
for AHL, as diet is one modifiable risk factors for AHL 
[16]. Here we used Fat-1 mice to evaluate the effects of 
n-3 PUFAs without the many problems associated with 
dietary supplementation such as oxidation of PUFAs in 
food pellets. We found that enriched endogenous n-3 
PUFAs suppressed age-related body weight gain and par-
tially slowed the progression of AHL in male C57BL/6N 
mice. Recently, long-term dietary n-3 PUFA supple-
mentation was shown to ameliorate the progression of 
AHL in female C57BL/6J mice [17]. In that study, ABR 
thresholds in response to 4-, 8-, and 40-kHz stimuli 
were significantly lower in mice administered n-3 PUFA 
at 10  months [17]. This protective effect during the 
early aging period seems to be reproducible, as we also 
observed a similar protective effect in male Fat-1 mice 
at 10 months (Fig. 2a). Together, these observations may 
suggest that n-3 PUFAs are effective for AHL prevention 
in C57BL/6 mice during the early aging period.

In this study, the progression of AHL was significantly 
slowed in Fat-1 mice only in response to low-middle fre-
quencies. This may have been due to baseline differences 
in ABR threshold at 2 months. Considering that the ABR 
thresholds of Fat-1 mice at 10 months tended to be lower 
than those in WT mice (Fig.  2a), enriched endogenous 
n-3 PUFAs may have protective effects on a wider range 
of cochlear frequency regions. However, it is also possible 
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Fig. 2  Auditory brainstem response (ABR) thresholds and body weights at 10 months of age. a Mean ABR thresholds (± standard errors of the 
mean) at 10 months. ABR thresholds for both wild-type (WT) and Fat-1 transgenic mice (Fat-1) were increased when compared to those of other 
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that sensitivity to n-3 PUFAs varies in different cochlear 
regions. We have already observed such a regional dif-
ference: maternal consumption of a diet high in n-6 and 
deficient in n-3 has been reported to severely impair neo-
cortical development in the rostral region, although the 
effect is mild in the caudal region [12]. n-3 PUFA recep-
tors and transporters may have a gradient expression in 
the cochlea. Further investigation is required to increase 
our knowledge of PUFA-mediated molecular mecha-
nisms in the cochlea, and Fat-1 mice will be useful for 
future studies.

In addition to the positive effects of enriched endog-
enous n-3 PUFAs for AHL prevention, we also noticed 
negative effects on hearing development (Fig. 1b). These 
negative effects of n-3 PUFAs are consistent with previ-
ous studies using rats: maternal dietary supplementation 
of DHA had negative effects on auditory brainstem con-
duction times in pups [8, 9]. In addition, excess maternal 
intake of n-3 PUFAs was shown to cause abnormal ABRs 
in older adult offspring [10, 18]. Further structural and 
functional analyses will be useful to reveal the mecha-
nisms underlying the potential adverse effects of n-3 
PUFAs.

Limitations
This study is not without limitations. First, only male 
mice were used in this study, so it is not known how the 
present findings would apply to females. Second, ABR 
thresholds of both WT and Fat-1 mice at 10  months 
were increased due to unknown reasons. Consider-
ing the fact that we performed the ABR measurements 
on 10-month-old mice more than 2 years after the ini-
tial ABR experiments (2, 13, 16–17  months old), we 
believe that the higher ABR thresholds at 10  months 
were likely caused by variability in epigenetic back-
grounds related to the progression of AHL within the 
same C57BL/6 strain. Third, this study lacks the data 
of metabolome analysis because of technical problems. 
In this study, WT and Fat-1 mice were fed a stand-
ard rodent diet (CE2, Additional file  1: Table  S2). As 
a result, the cochlear n-6/n-3 ratio was predicted to 
be higher in WT mice than in Fat-1 mice. Since the 
n-6/n-3 ratio of Fat-1 mice is close to 1:1 in all organs/
tissues examined [11], we believe that the ratio is also 
close to 1:1 in Fat-1 mouse cochlea. Future studies 
should establish metabolomic data using cochlear tis-
sue. Finally, a limitation of our histological analysis was 
the smaller animal numbers and larger variations in 
histological analyses that occurred compared with ABR 
analyses. Regarding the lack of correlation between the 
ABR and histological results, we suspect that the n-3 
PUFAs help to protect a wide range of the cochlea, not 

just on a specific cochlear region. However, it is also 
possible that additional histological assessments might 
reveal other reasons for the otoprotective effect of the 
n-3 PUFAs. Unfortunately, we are unable to conduct 
further animal experiments currently. The mechanism 
of the otoprotective effects of the n-3 PUFAs should be 
investigated further in future studies.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-019-4809-8.

Additional file 1: Fig. S1. Cdh23 genotyping and sequencing of Fat-1 
mice. The Cdh23 gene in three Fat-1 transgenic mice was sequenced. All 
of the Fat-1 transgenic mice examined had the same Cdh23753A/753A geno-
type. Table S1. Summary table for the two-way ANOVA. Table S2. Fatty 
acid composition of CE-2 diet. Additional methods. Cdh23 genotyping.
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