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Abstract 

Objective:  To address the challenge of computational identification of cell type-specific regulatory elements on a 
genome-wide scale.

Results:  We propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on 
sequence features. DNA sequences of “strong enhancer” chromatin states in nine cell types from the ENCODE project 
were retrieved to build and test enhancer classifiers. For any DNA sequence, positional k-mer (k = 5, 7, 9 and 11) fold 
changes relative to randomly selected non-coding sequences across each nucleotide position were used as features 
for deep learning models. Three deep learning models were implemented, including multi-layer perceptron (MLP), 
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). All models in SeqEnhDL outperform state-
of-the-art enhancer classifiers (including gkm-SVM and DanQ) in distinguishing cell type-specific enhancers from 
randomly selected non-coding sequences. Moreover, SeqEnhDL can directly discriminate enhancers from different 
cell types, which has not been achieved by other enhancer classifiers. Our analysis suggests that both enhancers and 
their tissue-specificity can be accurately identified based on their sequence features. SeqEnhDL is publicly available at 
https://​github.​com/​wyp11​25/​SeqEn​hDL.
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Introduction
Cell type-specific enhancers, cis-regulatory elements 
that up-regulate gene transcription in a cell type, play a 
key role in determining the regulatory landscape of the 
human genome [1]. Enhancers are commonly located 
in the introns and immediately upstream of their target 
genes’ transcription start site (TSS). They are also known 
to populate gene deserts [2], reside in introns of neigh-
boring genes [3], and co-localize with coding exons [4]. 
Enhancer mutations are often associated with diseases 
[5–7]. Accurate prediction of enhancers from DNA 

sequences is the basis of assessing whether mutation(s) 
can disrupt an enhancer’s activity, a type of mechanism 
for genetic diseases.

Predicting enhancers based on transcription factor 
binding sites (TFBS) was proposed because TFBS tend 
to be conserved over vertebrate evolution [8–10]. How-
ever, there is uncertainty regarding the identification of 
TFBS from DNA sequences. To ameliorate this challenge, 
direct sequence features such as k-mers (i.e., nucleotide 
sequences with a specified length) were then introduced 
to model enhancer prediction [11, 12]. However, these 
early studies did not achieve high prediction accuracy 
nor were they able to distinguish enhancers of different 
cell types.

With the wide application of ChIP-seq technologies, 
enhancers were frequently profiled on a genome-wide 
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scale [13]. The ENCODE project produced genome-
wide profiles of various epigenetic marks for multiple 
human cell types [14]. By applying a hidden Markov 
model (i.e. ChromHMM) to these epigenetic marks, the 
human genome sequence has been binned into more 
than ten chromatin states, including enhancers [15, 16]. 
The “strong enhancer” state, shown to be associated with 
increased gene expression, provides genome-wide posi-
tioning of active enhancers specific to a cell type [15]. 
Although these datasets’ availability renders enhancers’ 
positioning unnecessary, enhancers’ sequence structures, 
especially their subtle differences among cell types, can 
help understand cell type-specific gene regulation and 
should be explored.

The proper generation of negative sequences influ-
ences the effectiveness of enhancer classifiers. Negative 
sequences should contain similar basic sequence features 
with enhancers such as length distributions, GC, and 
repeat contents [12, 17, 18]; otherwise, enhancer classi-
fiers may learn different nucleotide compositions rather 
than occurrences of key DNA motifs. Although many 
studies reported sequence-based enhancer prediction, 
it is still unknown whether enhancers can be distin-
guished between different cell types or tissues based on 
sequences.

The sequence structures of enhancers may not be linear 
or additive. In fact, there could be complex grammar or 
semantics among different DNA elements of an enhancer 
[19, 20]. In recent years, deep learning technologies have 
gained greater popularity compared to conventional 
machine learning methods, and have been adapted in 
biomedical research to address complex research ques-
tions [21–29]. Thus, deep learning can be more powerful 
in classifying enhancers. In this study, we propose SeqEn-
hDL, a deep learning framework for the classification of 
cell type-specific enhancers based on sequence features. 
To include interdependency and sequence information 
in the features of a DNA sequence, SeqEnhDL uses posi-
tional k-mer fold changes across each nucleotide posi-
tion as its features. The effectiveness and advantages 
of SeqEnhDL are demonstrated based on the chroma-
tin state segmentation data of nine cell types from the 
ENCODE project [14].

Main text
Methods
Genome annotations
The sequences and transcripts of the human genome 
(hg19) were obtained from the UCSC genome browser. 
The “knowngene” dataset was used to guide masking 
exons. Chromatin state annotations of gm12878, H1hesc, 
hepg2, Hmec, Hsmm, Huvec, K562, Nhek, and Nhlf cell 
types generated by ChromHMM [30] were obtained from 

the ENCODE project (Broad version). The data included 
a total of 15 chromatin states. 4_Strong_Enhancer and 
5_Strong_Enhancer states were used as enhancers in this 
study.

Detailed computational procedure
See Additional file 1: methods.

Results
The SeqEnhDL framework
The SeqEnhDL framework is depicted in Fig.  1a. The 
framework started from “bed” files containing the chro-
mosomal positions of a large number (e.g. > 1000) of 
enhancers for a cell type. The DNA sequences of enhanc-
ers were retrieved from the human genome where exon 
and repetitive sequences were masked. These DNA 
sequences were then divided into individual enhanc-
ers with a fixed length of 200  bp, which makes features 
more standardized and comparable. 200  bp is recom-
mended because it corresponds with the resolution of 
a nucleosome and spacer region, though other lengths 
can be used. Enhancer sequences were used as the posi-
tive sequences. Control sequences for computing k-
mer fold changes, and negative sequences for testing 
enhancer classifiers, were randomly selected from the 
genome where exon, repetitive and enhancer sequences 
were masked, according to the GC contents of enhancer 
sequences. K-mer (k = 5, 7, 9, and 11) fold changes 
between all enhancer and control sequences of a cell 
type were computed and used as dictionaries. To con-
vert a DNA sequence to features, k-mer (k = 5, 7, 9, and 
11) fold changes at each nucleotide position, referred to 
as positional k-mer fold changes, were generated accord-
ing to the dictionaries of the cell type. Of note, we chose 
odd k-mers because fold changes of different k-mers can 
be aligned at their central nucleotide position. Then, 
features of each nucleotide position of a DNA sequence 
were concatenated, resulting in a 200 × 4 array of features 
for that DNA sequence. An intuitive example for the 
feature extraction process is shown in Fig. 1b. Thus, our 
feature extraction process retained interdependency and 
sequence information among the nucleotide positions of 
a DNA sequence.

Any dataset for building a deep learning enhancer clas-
sifier should be divided into training, validation, and 
testing data, in a cross-validation mode (e.g., 5-fold). 
Evaluation metrics were based on the average of each fold 
of cross-validation. Three deep learning models-MLP, 
CNN, and RNN, were built. Multilayer perceptrons are 
fully connected networks. CNN takes advantage of the 
hierarchical pattern in data and assembles more com-
plex patterns using smaller and simpler patterns. RNN 
makes use of sequential information among features. 
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Particularly, bidirectional long short-term memory 
(LSTM) RNN, which can learn long-term dependencies, 
was adopted. Because we adopted the positional k-mer 
fold changes, which utilize nucleotide position indexing, 
features at different positions (especially adjacent posi-
tions) could be interdependent. In addition, different 
k-mers [5, 7, 9, 11] at a nucleotide position represented 
the second dimension of features. The interdepend-
ency and sequence information of positional k-mer fold 
changes among nucleotide positions rationalize the use 
of CNN and RNN architectures.

Evaluation of the performance of SeqEnhDL
Discriminating enhancers of a single cell type/tissue 
from randomly selected sequences have been stud-
ied before and provided the foundation for evaluat-
ing the performance of SeqEnhDL. We retrieved DNA 
sequences located within the “strong enhancers” chro-
matin states of nine cell types from the ENCODE pro-
ject [14]. The performance of SeqEnhDL was evaluated 

in terms of accuracy and area under the curve (AUC) 
for distinguishing enhancers in each cell type. State-
of-the-art methods were selected for comparison with 
SeqEhnDL. gkm-SVM [12, 17] was chosen for com-
parison because it uses k-mer information to predict 
enhancers. DanQ [28] was chosen for comparison 
because it is an RNN-based tool for predicting the 
functions of noncoding sequences. The performance of 
DanQ on each cell type was represented by the highest 
statistics among predictions on 919 ChIP/DNase-seq 
marks. When different tools were executed, five-fold 
cross-validation was employed in order to generate 
reliable performance measures. Comparisons of per-
formances among different tools (Fig.  2) show that 
all the three models of SeqEnhDL greatly outperform 
gkm-SVM and DanQ. SeqEnhDL’s accuracies range 
from 0.961 to 0.999, suggesting that enhancers can 
be accurately identified on different cell types. Com-
parison of Receiver Operating Characteristic (ROC) 
curves on the hepg2 cell type (Additional file 1: Figure 

Fig. 1  The SeqEnhDL approach. a Flowchart of the general SeqEnhDL procedure. A more detailed flowchart is available in the Additional file 1: 
Figure S1. b An intuitive example of the positional k-mer fold changes for sequence representation. The enhancer sequence at chr2: 182,807,955–
182,808,154, with 5 bp flanking regions, is displayed. The example shows how to generate features for the 13th position (nucleotide “A”) among the 
200 bp enhancer region. 5, 7, 9, and 11-mer centerred at the nucleotide “A” is extracted. Then, these k-mers are searched against dictionaries for their 
fold changes. Finally, the features at the 13th position are represented by the fold changes of its 5, 7, 9, and 11-mers
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S2) re-confirmed that SeqEnhDL performed better. 
Of note, we also ran a recent approach based on the 
ensemble of deep RNNs [29] for a comparison. How-
ever, its accuracies and AUCs were around 0.5 (Addi-
tional file  1: Table  S1), indicating that this compared 
approach was ineffective on this study’s datasets.

To validate the advantages of deep learning models 
over conventional machine learning models regarding 
enhancer classification, we flattened the k-mer features. 
We built enhancer classifiers based on six conventional 
machine learning models. Note that 2000 positive and 
negative sequences were randomly selected for each 
cell type and repeated ten times to ensure training each 
deep learning and conventional machine learning model 
could be finished within 1 h. Additional file 1: Figure S3 
shows that accuracies of SeqEnhCNN and SeqEnhRNN 
are consistently higher than conventional machine learn-
ing models, and SeqEnhMLP is among the second tier in 
most cell types. These analyses collectively suggest that 
enhancers present in a single cell type can be accurately 
identified based on sequence features by SeqEnhDL, and 
SeqEnhDL significantly outperforms existing methods by 
better discriminating enhancers from randomly selected 
sequences.

SeqEnhDL can discriminate enhancers’ cell types based 
on DNA sequences
Successful machine learning models for distinguish-
ing enhancers from different cell types must learn cell-
type-specific sequence structures such as domains, 
motifs, and their interactions. Previous enhancer clas-
sifiers were not examined regarding this capacity. Some 
may be adapted for distinguishing enhancers from dif-
ferent cell types by treating one cell type as the negative 
group. We applied gkm-SVM and SeqEnhDL to distin-
guish enhancers from different cell types. We switched 
the assignments of positive and negative groups for 
each pair of cell types and computed the average accu-
racy and AUC. The accuracies and AUCs for all pairs 
of cell types are displayed in Fig. 3. The accuracies and 
AUCs of gkm-SVM for all pairs of cell types are around 
0.5, indicating that gkm-SVM failed to capture tissue-
specificities of enhancers. In contrast, all models of 
SeqEnhDL generated high accuracies (e.g. > 0.9) and 
AUCs (e.g. > 0.95) in most cell type combinations, indi-
cating that SeqEnhDL can identify tissue-specificity. 
This analysis suggests that SeqEnhDL can learn com-
plex sequence features related to tissue-specificities 
and discriminate enhancers from different cell types.

Fig. 2  Comparison among different enhancer classifiers with regard to distinguishing cell type-specific enhancers from randomly selected 
non-coding sequences. a Comparison of accuracies. b Comparison of AUCs
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Discussion
When we built enhancer classifiers, we separated con-
trol and negative sequences. We used equal numbers of 
positive and negative sequences, which can significantly 
reduce the chances of overfitting, a common machine 
learning problem. We used all enhancers’ sequences 
to compute k-mer fold changes. Although theoreti-
cally, enhancers can be divided into two subsets (one for 

computing k-mer fold changes and the other for testing 
enhancer classifiers), it has practical limitations because 
longer k-mers are very important for composing enhanc-
ers and may occur only a few times in a cell type.

We successfully applied SeqEnhDL to discriminate 
enhancers from two cell types. gkm-SVM failed to dis-
tinguish enhancers from different cell types, indicating 
that most (if not all) previous k-mer based models tend 

Fig. 3  Comparison between gkm-SVM and SeqEnhDL with regard to discriminating enhancers from two cell types. a, b Comparison of accuracies. 
c, d Comparison of AUCs
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to learn the common features of enhancers rather than 
tissue-specific motif structures. This successful applica-
tion suggests that tissue/cell type-specific gene regulation 
could be better understood based on machine learning of 
high-level enhancers’ structures.

SeqEnhDL adopts positional k-mer fold changes as 
the sequence representation. This representation utilizes 
nucleotide positions, rather than k-mer indices. Posi-
tional k-mer fold changes reflect the degrees of k-mers’ 
specificity to a tissue/cell type regardless of the exact 
sequence. These positional k-mer fold changes increase 
the likelihood of capturing complex and high-level 
sequence features, which may aid the performance of 
SeqEnhDL.

Over a 200  bp sequence, important k-mers could 
appear at any position, and any important local patterns 
should be captured and contribute to enhancer predic-
tion. Compared with conventional machine learning 
models, deep learning models extract high-level patterns 
from the features. Thus, it is not practical or reason-
able to discriminate which nucleotide positions are more 
important than others when sequences are represented 
using positional k-mer fold changes.

Conclusion
We propose SeqEnhDL, a feature extraction and deep 
learning framework for classifying cell-type-specific 
enhancers based on sequence features. A variety of analy-
ses were performed to demonstrate that SeqEnhDL out-
performs existing enhancer classifiers. We further proved 
that SeqEnhDL could be used to discriminate enhancers 
from different cell types.

Limitation
The training dataset of this study from ChromHMM may 
be highly noisy. The primary goal of this study is to dem-
onstrate the effectiveness of SeqEnhDL. SeqEnhDL is 
expected to perform better on cleaner datasets. Specific 
high-level features that are important for enhancer classi-
fication have not been addressed in this study and remain 
an open question.
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